TUGboat, Volume 2, No. 3

other VAX over DECNET and converted to QIO’s
by the separate program OUTTOVAR. At an in-

stallation with everything on the same machine,

this headache can be eliminated by inserting the
QIO’s directly in DVITOVAR in place of OPEN and
WRITE statements. (The peculiar structure of the
Varian-supplied driver program does not allow raster
plot files to be spooled.)

LVSPOOL set aside almost a full megabyte to
hold character raster data, far more than needed.
FORTRAN does not allow the preferred solution of
dynamic allocation, but we reduced the buffer to
200K bytes which is probably still lots too much.
DVITQVAR also defers font loading until a font is
actually needed; thus many fonts are never loaded
although they are defined in the macros and thus
appear in the postamble. This is a considerable
timesaver, and reduces even further the buffer size
needed.

DVITOVAR is rather verbose in announcing the
processing phases it is going through. These mes-
sages can be removed if desired. The program has
not been adapted to an equivalent of LHSPOOL
which produces output horizontally on the page, but
such a project should present no difficulties.

DVITOVAR was also adapted into a similar pro-
gram DVITOLP to drive lineprinter class devices
(Yes, many users do need such primitive output). To
get this to work I had to construct with trepidation,
understanding little of the format, a new TFX file
to represent line printer fonts. (Font CMTT which
simulates such a font was not satisfactory.) All
widths in this font are set to 7.2 points (ten pitch);
there is no kerning or ligatures; wordspace is set to
7.2 points with zero shrink, and several parameters
I didn’t understand were left alone. But this font
seems to serve the purpose as long as all spacing
parameters in the text are appropriately restricted.

Anyone interested in obtaining the programs
cited above should contact

Jerry Craig
Morgantown Energy Technology Center
B1-330
Collins Ferry Road
Morgantown, WV 26505
304-599-7178
Technical questions can be addressed to me at

Dept. of Statistics and
Computer Science
West Virginia University
Morgantown, WV 26506
304-293-3607
Meanwhile, I await word of a TEX version which may
be adapted to run on our PDP-11/34, which has

UNIX v6 and the rather strict ISO standard P
from Vrije University, Amsterdam.

* X E % k % % % % £ *
DIABOLIC TEX
Timothy Murphy
Trinity College Dublin
Preamble

Before TEX can be run with a given output d
2 modules must be provided: an input mo
consisting of a set of font tables; and an o
module, or driver, which will translate the “.
file produced by the main TEX program into ins
tions for the output device.

Even for a Diablo, writing these modules
prove a time-consuming occupation, at leas
amateurs of the computing art like ourselves. |
our only output device was a Diablo—Versatec:
Varians being as remote from us as Neptune
Pluto—we wrote to all those in the TUG men
ship list under the Diablo heading. The resj
was disheartening; the few replies we received |
from groups in much the same position as ourse
viz Waiting for Godot.

This brief account of our own efforts may t
fore not be out of place. At the very lea
may shame some of the TEXperts who have
developed Diablo drivers to share their secrets
us beginners.

The Diablo as printer

One can envisage 3 very different ways in v
the Diablo might be used as an output device.

(1) The output could be run through the Dia
or more times, with different daisy-wheels inst
on each iteration, e.g. first with roman, then i
then symbol, etc. The driver would of course
to be designed so that only those characters i
appropriate font were printed on each run.

(2) The output might be sent through the D
just once, with a single daisy-wheel, those chara
not appearing on this wheel being “made ur
superposition of existing characters (moved u
the right, etc, so as to give the required facsim

(3) All characters and symbols might be ma.
out of dots, using the graphics mode on the Dj
In effect this would make the Diablo analogou:
digitalised type-setter, albeit one of very low re
tion.

Our calculations seemed to show that the
solution would be impracticably time-consur
each page taking more than half-an-hour to put
We hope to implement the first solution she

16

This could presumably give output of quite good
quality. But we began by writing a driver to the

second specification; and that is what is described

here.

Minimal font requirements for TEX
can be run with only 1 font (presumably
roman) provided the text does not include mathe-
matical formulae. I full mathematical mode is re-
quired (so that all the control sequences in the TEX
manual can be used) then 10 fonts must be supplied,
namely: 3 roman fonts for ordinary size, script size
and script-script size; 3 italic and 3 symbol fonts
gsimilarly; and 1 font for outsize characters (including
those built up from smaller parts). However, the
fonts for different sizes need not really be different,
e.g. roman script and roman script-script may well
be the same. (But roman and italic cannot coin-
cide, since entirely different characters occur in cor-
responding places on the 2 fonts.) Thus the minimal
number of fonts needed is 4: roman, italic, symbol
and “ex” for extra large characters.
We provide these 4, plus a “typewriter” font
which allows us to print files, e.g. of macros, exactly
as they are written.

Our solution: an overview ...

As remarked above, TEX requires information
about the particular output device in use both on
input (the widths, heights, etc of the characters) and
on output (how to interpret the DVI bytes).

We keep all the information required in a
single file, DIABLO.TBL. This helps to ensure
that the input and output modules match: any
changes made in one being accompanied by ap-
propriate modifications to the other. Two programs,
MKTFM.PAS and MKFNT.PAS, then construct the
input and output information from this in the re-
quired format.

More precisely, MKTFM.PAS constructs from
DIABIL.O.TBL the 4 font tables needed for
mathematical work, DIARM.TFM, DIAIT.TFM,
DIASY.TFM and DIAEX.TFM, together with the
“typewriter font” DIATT.TFM. These are written
in the format (FILE OF integer) required by TEX.

Meanwhile, at the “front end”, MKFNT.PAS
constructs from DIABLO.TBL a flle DIABL.O.FNT,
which our output driver DVIDIA.PAS takes as
auxiliary input in addition to the DVI file produced
by TEX.

... and some details

The account above is somewhat simplified. In
practice we have found it useful to split both the
input and the output modules, so that we have a
“readable” account of what is going on at each stage.

TUGboat, Volume 2, No. 3

Thus for the input module we first produce s
single large file containing all 4 fonts in hexadecimal
form. A second program then converts this “.TFH"
file into the 5 requisite “. TFM” files.

Similarly, at output we first unpack the “.DVI”
file into bytes, before translating these into Diablo
instructions.

We also found it convenient to split off
the “constant” part of DIABLO.TBL (containing
the prefaces and epilogues to the .TFM files)
into an auxiliary file DIABLO.AUX. This leaves
DIABLO.TBL to concentrate on the actual con-
gtruction of the 640 characters in the 51 fonts.

To summarise: all font information is kept in
the 2 files DIABLO.TBL and DIABLO.AUX. The
program MKTFH.PAS constructs a readable file
DIABLO.TFH from these; and MKTFM.PAS then
converts this into the 5 .TFM files corresponding to
the 5 fonts.

With these font files in place we can run
TEXPRE. We are then ready to put our manuseript
file, say MS.TEX, through TEX.

The program DVIBYT.PAS unpacks the file
MS.DVI produced by TEX into its constituent bytes,
in the readable file MS.BYT.

Meanwhile MKFNT.PAS has constructed from
DIABLO.TBL a file DIABLO.FNT for our output
driver BYTDIA.PAS. This driver converts the file
MS.BYT into a file MS.DIA ready—at last—to be
sent to the Diablo.

Command flles

It would be tedious to go through the above rig-
marole every time we had a file to TEX. So we make
free use of command files to cut the slog.

We find the DEC-20 (TOPS-20) .MIC (Macro
Interpreted Commands) file format particularly con-
venient, since it allows us to pass parameters—the
name of the file to be TEXed, and the directory in
which the TEXing is to be done.

With .MIC’s help, we need only type in 2 com-
mands. On first setting up TEX we type

O0do texpre <scratch>
This installs TEX in our “public” directory
<scratch>. To TEX a file, say MATHS.TEX
(supposing both ourselves and this file resident in
the directory <scratch>), we give the command
: 0do tex maths

The output for the Diablo is written in the file-
MATHS.DIA.

These 2 .MIC files are listed in Appendix A, since
they provide a good summary of the relations be-
tween our numerous programs. ‘

It is not necessary to study MICology in order to
understand these files. Suffice to say that lines start-

TUGboat, Volume 2, No. 3

ing with 0 represent commands normally entered at
the terminal; while lines starting with * correspond
to entries made in response to requests from within
programs.
The Diablo table

Most of our time and effort has gone into 2
modules, the Diablo table and the driver.

Looking first at the table, DIABLO.TBL takes
the form of a textfile, with 1 line for each of the
5 X 128 = 640 characters in our 5 fonts. The first

2 lines should make the pattern clear:
0000B w=9 "\h3\b|\v3\u-\d \r" \Gamma
0001B w=10 *\h2/\v3\d——-\u\\\r" \Delta

The figure following “w=" is the width of the
character. At present we take all characters to have
the same height 6 vu, and the same depth 0 vu. (For
the mesning of “vu”, see the next section.) It will
be easy enough to allow varying heights, etc, later, if
that proves necessary. The string in quotes following
the width contains the instructions for printing the
character on the Diablo. The backslash introduces
control sequences with the following meanings:

\bn set HMI to n (i.e. n/120 inch)

\r reset HMI to standard setting (n = 10)
\vno set VMI to n (i.e. n/48 inch)

\u move up

\d move down

\f move forward

\b move back

\",\\ print " or \

Some of the more interesting characters in
DIABLO.TBL are listed in Appendix B.

Diabolic points

The horizontal resolution of the Diablo is 1/120
inch, and the vertical resolution 1/48 inch. All
movements are through multiples of these. We
therefore found it convenient to introduce a horizon-
tal unit “hu”, equal to 1/120 inch, and a vertical
unit “vu”, equal to 1/48 inch.

For the moment we have actually re-defined
“point” to have these 2 meanings, according as they
refer to horizontal or vertical measure. This en-
sures that actual movements all take integer values,
simplifying the arithmetic of width tables, etc.
However, the machinery to implement proper points
is all in place.

The Diablo driver

Given the format of .DVI files, the driver for a
particular device almost writes itself; and indeed
most of our driver is actually device-independent.

A very abbreviated version of the driver may
be found in Appendix C. All PROCEDURE head-
ings are given; but where there are several similar

PROCEDURES, only 1 body is listed. Also hor
tal and vertical movements are treated in mucl
same way; 8o only one of these is detailed.

Our PASCAL compiler PASC20 allows the i
gion of header files contsining CONST and T
declarations. This useful feature greatly red
the risk of incompatible modifications being n
to different modules. Our header file TEXDIA.
listed in Appendix C after the driver BYTDIA.]

Our only real design decision was to accurm
movements. TEX puts out a large number of rex
dant movements, e.g. successive DVI instruct
might order an upward movement of 2 points,
lowed by a downward movement of 10 points.
prevent the Diablo from doing a St Vitus da
we accumulate all movements until printing is
minent. Thus a record is kept of the point (re
realV) on the page where the “cursor” actuall;
as well as the point (H, V) where it should be, i
movements to date had been implemented.

The actual position is only updated-
making the appropriate horizontal and ver
movements—when a print instruction is receive

Appendix A. The 2 command files
TEXPRE.MIC

Odefine s: <scratch>

Gcopy sysdep.pas, texpre.pas, tex.pas s:
Ocopy ascii.tbl s:

Ocopy sysdep.str, texpre.str, tex.str s:
Gcopy texdia.h, mktth.pas, mktfm.pas 8g:
Ocopy mkfnt.pas, dvidbyt.pas, bytdia.pas s:
Ocopy disblo.aux, diablo.tbl s&:

OQcopy disblo.tex, basic.tex s:

Gcopy tex.mic s:

Oconnect s:

Opasc20

*gysdep=sysdep

*texpre=texpre

*tex=tex

smktfh=mictfh

*smktIm-nktim

smkfnt=mkfnt

*dvibyt=dvibyt

*bytdia=bytdia

*tZ

0load texpre, sysdep

Osave

0load tex, sysdep

Osave

Qdelete sysdep.pas, texpre.pas, tex.pas
Odelete sysdep.rel, texpre.rel, tex.re)
Odelete strinmi.tbl

Oappend sysdep.str, texpre.str strini.tbl
Qexe mktfh '

*diablo.aux

*diablo.tbl

#diablo. tfh

Oexe aktim

18

s#diablo.tth
sdiarm.tfm
sdiait.tfm
*diasy.tim
*diaex.tin
*diatt.tin

Oexe mkint
=diablo.tbl
sdiablo.fnt

Orun texpre

#\input diabloe \end
Odelete strini.thbl
Gappend sysdep.str, tex.str strini.tbl

TEX.MIC
Oconnect <scratch>
drun tex
*\input ‘A \end
érun dvibyt
*’A.dvi
**A. Dyt
Orun bytdia
*'A.byt
*'A.dia
Appendix B. Excerpts from DIABLO.TBL
00008 w=9 *\h3\bl\v3\u-\d \r* \Gamma
00018 w=10 *\h2/\v3\d~---\u\\\r* \Delta
00028 w=10 *\h3\b{\b--)\h2 \r* \Theta
00038 wz12 "\hd4\D/ \\ \r* \Lasbda
00048 w=12 "\hO/\r\\" wi
00058 w=12 "\h3|\v8\u_\d| \r* \P1
00068 w=10 "\hO>\v3\u-\d\d-\u\r * \Sigm
00078 wet0 "Y* \Upsilon
00108 w=10 *\hOo)[\r °® \Phi
0011B w»=10 “U\b|" \Psi
0012B w=i0 "\hOO\v2\u\r_\d" \Onega
0080B w=10 "O" 0
01018 w=10 “A" A
01328 wxi0 *2° 4
01378 w=12 *\h8-\r-* -
01418 w=10 °®p* s
0172B w=s10 “x*]
0200B w=9 "\h3\bi\v\u-\d \r* \Gammait
02138 w=12 "\bde(\r* \alpha
02148 w=10 *\h3{\hOo\v3\uo\d\h7 \r* \beta
02158 w=0 ow \gasma
02168 w=i0 "\hOo\v2\u\r«<\d* \delts
02178 w=10 "\bhO<\r-* \epsilon
02230B w=10 *\hOc\v3\u<\d\zr * \seta
02218 w=10 "\h2n\v2\d|\h8 \r* \eta
02220 w=i0 *\hOOD\r-* \theta
02238 w=10 *"i°* \iota
02348 w=10 °k* \kappa
02258 w=12 *\vS\d\h1'\vi\u'\vd\u\r* \lambda
02268 w=10 *\h2\b,\ryv* \mu
02278 w=13 *\h3(\r/* \nu
0230p w=9 *\hoc\v2\uc\v1\d\bi\b\hO*\v2\d\r, \vi\u"
\xi
0231B w=10 *\hO\vi\u-\v3\d\vi\d\r\"\v8\u** \pi
0232B w=12 *"\h3\b\v2\di{\u\ro" \rho
02338 w=i2 "\h2o\vi\d\r)}\u" \sigma
0234B w=13 "\wi\d\hi)\u\h2t\d\r}\u" \tau
0238B w=10 |'v* \upsilon
0236P w=10 "\hOo\r/* \phi
02378 w=10 *x" \chi
0245B w=10 “\hOo\r\vi\d'\u" \partial
0260B w=10 %0O* 0

04118

04158

0416P
0417B

04218

04228
04238
04248
04258
04268
04278

0431B
04328
04338

04358

0451D

04738
04758

0476B
0500B

05418

=10
w=12

w=138
w=10
=10
=10

=10
=10
=10

=10
w=10
=10

=10
=14

w=10
=10
=10
w14

w=10
w=10
w10
w10
=10
w=10

w=10
=10
w=10
=10
w=10
w=10
=10
=9

w=10
w=10
w=12
w=16
=18
w=10
w={3

=12

»=18
w»=10

=10
w=10
w=10
=10
w=12
w=14

w=9
=10

=10

=10
=16
=18
w=18
w=18

TUGboat, Volume 2, No. 3

npw A
g 3
*\20/\h2-\hO\v2\d '\vl\u\r(\v?\d'
psi
\Rh3u\ru \owege
L. -
"\v2\u.\d" \ecdot
i o \times
"\ri\ds\u* \ast
"* \rslash
\v1\uo\d \cire
"\h0+\v3\r\d-\u* \pa
\nO+\v3\r\u-\d \mp
O\b+ \oplus
q\b~ \osinus
“X\bo" \otimes
*\bi\vi\u, \a0\v3\u\r\d® \odiv
"\hoo\vi\u\r.\d" \odot
*\h2 \hO.\v3\u.\vi\u_\v4\d\h2 \r *
. \div
"\hO|\r\v3\u-\da* \interc
*\ho\r\vi\u.\d" \bullet
"\hO|\r\vi\u_\d* \perp
\b2 \hO\v3\u_\vi\u_\u_\v5\d\b8 \r
\eqv
\hOo<\r\vd\d-\u \subset
"\hO>\r\v4\d-\u" \supset
*"\ho<\r\vé\d-\u" {\char*034}
*\ho>\r\vd\d-\u" {\char’035)
*"\hOo<\r\v4\d-\u" \preceq
"\hO>\r\vd\d-\u" \succeq
"\v3\d)\u* {\char’032)
*\bO\vi\d\r\v2\d}\v3\u" \epprox
e {\char'030)
v {\char*031}
"\ho=\r/" {\char’039)
*\ho=\r\vé\u.\d" \doteq
uee \pm
> \suce
"\h3<-~\r* {\char*137)
*\h3=-=>\r® {\char’'031}
\hol\rt \up
\ho|\r\vi\dv\u® \down
\h3<--\r> {\char'027}
“\h6<\r<* \lsls
\h&>\r> \grgr
"\ho-\r\vi\d}u* \simeq
"\h<=\r" {\char*137}
"\hg=>\r" {\char'031)
\h6{-\r> \mapsto
[A0] \prm
\h8o\ro \infty
"\hOC\r-* \in
"\hoC~\r/* \notin
"\hOO\r/*® \eaptyset
L I]
"\h4\\-/\r" {\char’'02¢)
"\hO\vS\u-\d-\d\bd-\u\r|® {\char’028}
we char’5
not implemented
"\ h3\v3a\d'\\’\r" \aleph
"R \real
b b \imeg
"\hOJ\r\vT\u_\d* \top
\hO/\r \not
L U \Ascr
"\R8\\/\r" {\char*023)
"\h8/\\\r"* {\char'022}
"\h8/\\\r" {\char’004)
\he\\/\r {\char*037)
"\b3|=\r-* \vdash
"\u3--\r|* \dashy

TUGboat, Volume 2, No. 3

~

05428 w=10 *|" \1f1o0r PROCEDURE hor_tab (b: byte);
= a|n \rtloor . y ——
eyt ol Nont | BEGIN write (ESC, HT, chr (b+1)) END;
=10 "|* - Ce:
g% :—3?) "1Ii" W PROCEDURE vert_tab (b: byte);
"}n \} |
ponst i Qo \langle PROCEDURE 1initislise;
0B51B w=10 *>* \rangle BEGIN :
05520 w=10 *|* \relv B8 := chr(8); HT := cbr(9);
05538 w=6 *\b3||" \lettvy LF := chr(10); VT := chr(11);
05548 w=6 *\n2(l \r* \lefs FF := chr(13); ESC := chr(2D);
05558 w=6 *\n2() \r" \dright RS := chr(30); US := chr(31):
0560P w=12 *\vA\d\h&‘/\r* \surd o o := 0: SP := 0:)
0561B w=10 8" \ D o e: i ronet
0562B w=9 "\hO\\\h1\b\v3\u\h2----\d/\r* \nabla hai_reset; -rese
05638 w=9 *\h3\v2\u{\d\d) \u\r" \smallint END;
0564B w=12 “\h6\bl\vilu \di\r® \lub
0565B w=12 "\h6\b(\v7\u_\d|" \glb PROCEDURE read_2_bytes (VAR p: pts);
05718 w=10 "\hO|\r\vi\u-\d* \dag
0572B w=10 "\bo!\wi\u-\vI\d\r-\vi\u" \ddag PROCEDURE read_3_bytes (VAR p: pts);
0574B w=10 "O® t‘ ot '
0575 w=0 " C . .
O T2 maz-\rLe \tmm PROCEDURE read_4_bytes (VAR p: pts);
O5TTBE w=10 "$ \s VAR c, d, e, £: byte;
Appendix C. The Diablo driver BECIN
(much abbreviated) - read (¢, d, e, I);
P := c*256 + d + (e + 2/258)/256;
PROGRAM bytdia (input, output); IF (c >= 128)
: THEN p := p - 256#256
INCLUDE "TEXDIA.H' END; .
VAR PROCEDURE move_to (H, V: pts);.
fnt_file: Int_store;
stack: ARRAY (stack_range] OF pts; VAR xx, hh, hhq, hhr, yy, vv, vvq, vvr:
font_mem: ARRAY [mem_range] OF byte; integer;
char_width: ARRAY
{font_range,0..127] OF byts; BEGIN
char_base: ARRAY xx := hu_from_pts (H ~ true_H);
[font_range,0..127] OF mem_range; IF (xx < 0)
b, ¢: byte; THEN IF (abs(xx) < 127)
H, V, x, §, z, w: pts; THEN BEGIN
true_H, true_ V, p, q: pts; hmi_set (abs(xx)):;
page_mno, SP, i: integer; IF (xx > 0)
BS, HT, LF, VT, FF, ESC, RS, US: char; THEN write (*)
2: font_range; . ELSE write (BS);
printing, overprianting: boolean; true_H :s :
true_H + hu_to_pts (xx);
FUKCTION hu_from_pts (p: pts): integer; hni_reset
BEGIN hu_from_pts := round {(p) EMND; END
‘ ELSE BEGIN
FUNCTION wvu_trom pts (p: pts): imteger; hh := hu_from pts (D) ;
bhq := hh DIV 84;
FUNCTION hu_to_ptas (hh: integer): pts; bhr := hh MDD 84;
BEGIN hu_to_pts := hh END; bomi_set (64);
hor_tad (hhq) ;
FUNCTION wu_to_pts (vv: integer): pts; hmi_get (hhr);
write (* °);
PROCEDURE hmi_set (b: byte); bhmi_reset;
BEGIN write (ESC, US, chr (be1)) END; true_H := hu_to_pts (hh)
END;
PROCEDURE wmi_set (b: byte); : yy := vu_from_pts (V. - true_V);

IF <> 0)
PROCEDURE hmi_reset; .

BEGIN bmi_set (hor_spacing) END; END.

PROCEDURE wmi_reset;

20

PROCEDURE hor_line_length (p: pte);
PROCEDURE vert_line_leagth (p: pts);

VAR yy, yyq. yyT. i: A4integer;

BEGIN
yy := vu_from_pte (V + p - true V);
yyq :=yy DIV 4; yyr := yy NOD 4;
kmi_set (0); wmi_set (yyr);
write (*1°, LF); wvai_set (4);
FOR 1 := 1 T0 yyq DO write ("I’, LF):
Vi=V+ p.
true_V := true_V + vu_to_pts (Jy):
h-i_ruet, vai_reset

END;

PROCEDURE push_stack;
FROCEDURE pop_stack;

BEGIN
IF (SP < 6)
THEN writeln (tty, 'Stack exhausted’);
w := gtack[SP]; SP := 8P - 1;
z := gtack[SP]; SP := SP - 1;
y := stack[SP); SP := 8P - 1;
z := etack(SP); 8P := §P - 1;
V := stack{SP}; SP :=8P - 1;
H := stack{SP]; 8P :=SP - 1
END;

PROCEDURE new_page;

BEGIN
write (FF);
H:=0; V :=0;
true H := 0; true V := 0;
page_no := page_no + 1
END;

PROCEDURE store_font (VAR fnt_file: fnt_store):

VAR i: integer; b: byte; £: font_range;
BEGIN
1:=0; b :=0; £ :=1;
WHILE NOT eof (fnt_file) DO
BEGIN
char_width [f,b} :=
get (fat_file);
char_base [f,b]) :=
REPEAT
font_mem (i) :=
get (fat_file);
1 :=1+1
UNTIL (font_mem {1-1} =
b= (b + 1) MOD 128;
IF (b = 0) AND NOT eof (Int_ tile)
THEN £ =2 + 1
END

fnt_filet;

Int_tilet;

EMD;

PROCEDURE change_font
(VAR £: font_range; ch: char);

TUGboat, Volume 2, No. 3

BEGIN
IF (ch IN ['r*, *i’, "s’, 'e’, 't’D
THEN GASE ch oF

o & t:=1;
4 A) £ :=5
END
ELSE writeln (tty, ‘Undefined foat °,
f, * used’)
END;
BEGIN (+ main *)
initialise;

reset (fat_file, °DIABLO.FNT’);
store_font (fnt_file);
WHILE NOT eof AND (b <> 131) DO
BEGIN
Tead (b);
IF (b <= 127)
THEN
- BEGIN
IF NOT printing
THEN BEGIM
move_to (H, V);
printing := true
END;
i := char_base [f, b];
WHILE (font_mea [11 <> 0) DO
BEGIN
write (chr (font_mem{i}));
- im=ie1
m.
IF overprinting
"THEN . BEGIN
printing :=
.overprinting :=
END
ELSE H := H + char_width {f,b];
true_H := true_H ¢ char_width (£,b]
END
ELSE IF ({128 <= b) AND (b <= 153))
THEN
BEGIN
printing :=
CASE b OF
128: H (» NOP #)
129: BEGIN (+ BOP *)
FOR 1 := 0 TO 10
DO read_4_bytes (p):
new_page
END;
130: : (s EOP #)
131: : .
(¢« start of postamble *)
132: push_stack;
133: pop_stack;

false;
false

faise;

134: BEGIN
(* vertrule *)
B .en
135: BEGIN
{+ horzrule *)

read_d4_bytes (p);
read_4_bytes (q);

TUGboat, Volume 2, No. 3

hor_line_length (q):
H:=H-q
END;
138: BEGIN
overprinting := true
END
137: BEGIN (*» fout *)
END;
138: BEGIN
read_4_bytes (w);
H:=H+vw
EXND;
END
ELSE IF ((154 <= b) AMD (b <= 217))
THEN change_font (£, chr(b-90))
END
END.

The header file TEXDIA.-H

CONST
bor_spacing = 10; (» standard HMI *)
vert_spacing = 8; (= standard VNI »)
stack_size = 125; '
mea_size = 3000;
max_font no = 5;

TYPE
byte = 0..255;
half_word = 0..65535;
oneoftwo = 1..2;
oneoffour = 1..4;
halves2 = PACKED RECORD
lhword: balf_word;
CASE oneoftwo OF
1: (rhword: half_word);

2: (byte2: byte; byte3: byte)

END;
bytesd = PACKED RECORD
byteO: byte;
bytei: byte;

CASE oneoftwo OF
1:(rhword: half_word);

2: (byte2: byte; byte3: byte)
m-

memoryword = PACKED RECORD
CASE oneoffour OF
1: (pts: real);
2:(int: integer);
3: (twohalves: halves2);
4: (fourbytes: bytesd)
END;
pts = reail;
stack_range = 0..stack_size;
mea_range = 0..mem_size;
font_range = 1..max_font_no;
Int_store = PACKED FILE OF byte;
font_type = (rm, it, 6y, ex, tt);
fonttile = FILE OF memoryword;

x % %x % X %k x ¥ ¥ % ¢

Site Reports

* % % % ¥ % ¥ ¥ % % %

NEWS FROM THE HOME FRONT
David Fuchs
Stanford University

Here’s what’s going on TpX-wise at the
Department at Stanford. Professor Knuth }
working version of the UNDOC macro proc
written in its own language (DOC). UNDOC
piles itself into a Pascal program, thus UNI
is now available in Pascal. DOC is being use
the source language for new versions of TEX]
and TEX82. All three programs (both DOC
Pascal sources) are expected to be available for |
ing to new machines in early 1982. TREX82
complete rewrite of TEX based on the exper
gained from Ignacio Zabala's translation of
TEX. Portability has been improved by removir
floating point operations. Another sticky portal
problem with the current Pascal TEX is initis
tion. Recall that installing a new TEX involves
ning the program TEXPRE, which makes a
file (called TEXINI.TBL) that represents the i
state of TEX's data structures (about 36K won
size). On TOPS20, we then run TEX, which 1
in TEXINLTBL, at which point we interrupt
process and save the current core image. Wher
usgers ask for “TEX”, they get a copy of this
image, which continues execution from where w
terrupted the first TEX run. Thus, our user
saved the not-insignificant overhead of data s
ture initialization. The resulting core image is
smaller and faster than if the initialization |
tions of TEXPRE were to be incorporated into
Unfortunately, we have found that the facili
“saving an interrupted job’s core image for later
tinuation” is not available in many environm
including VAX VMS, UNIX, and IBM timesh
gystems. Consequently, TEX users outside o
DEC 36-bit world have TEX re-read TEXINI
each time it is run, which is a significant
handicap. To help rectify the situation, TR
data structures will change to require less initi:
tion. We also plan to make a program avai
that can read TEXINI.TBL and produce P:
language initialization code to be inserted ints
TEX Pascal source before compiling. Unfortun:
varisble initialization is not standard Pasca
there must be different versions of this prograr

the Hedrick compiler, Pascal/VS, VMS Pascal,

