
C r u d e t y p e

An Adap tab l e Device Driver

R.M. Damerell

Royal Holloway and Bedford College

In t roduc t ion

The purpose of this program is to provide a frame-

work for users to write 'TEX device drivers for

a variety of 'crude' devices. Roughly speaking,
'crude' means any printer that cannot print the

fonts that METRFONT generates. This would

include daisy-wheels and most impact dot-matrix

printers. Considered as output printers for my,
such devices usually have some of the following

defects:

1. Coarse resolution.

2. Restricted character set.

3. Some printers cannot do reverse line feeds;

some can. and tear the paper.

4. Slow interface between CPU and printer.

Although such printers cannot do justice to TEX
output, drivers for them are still needed. Some

users cannot afford high quality printers. Some can

only afford to use them for final output; so they

need to make proofs on a cheaper printer. Also,
anybody who has a high quality printer may well

need to refer to various WEB files while writing a

driver for it. These can become illegible in critical

places. Figure 1 gives a sample from DVItype.

Using the basic (line printer) version of Crude-

type, we can get a copy of these formulae which is

a t least legible, even though the result may not be

at all pleasant t o look at. A further difficulty with

conventional drivers is that most of these use the

algorithm 'paint a page of pixels, send it down the

line'. This places a heavy load on both the host

computer and the link to the printer. Of course, one

can try to reduce this load by various optimisations,

(e.g. by writing critical bits of code in machine lan-

guage) but this makes the program non-portable,

and often introduces bugs. Crudetype is written

entirely in PASCAL, without any attempt at opti-

misation. When compiled on a VAX 780 with the

NO-OPTIMISE, CHECK and DEBUG qualifiers it

runs at about 2-3 seconds a page. These times

are highly variable, and the VMS optimiser reduces

them by about 10-15%.

Printers vary enormously both in their capa-

bilities and in the commands that drive them. The

behaviour of Crudetype is controlled by a large

number of constants, which supposedly describe

how the target printer does things. This does

have the disadvantage that the user must compile

a separate copy of the program for each different

printer, and also devise some way to ensure that he

uses the right version for the intended printer. But

the only alternative seemed to be that Crudetype

should read and parse a file describing the printer

and this appeared to be unbearably messy. Ideally,

these constants should be so designed that:

1. Any decent printer can be driven by assign-

ing the right values to these constants and

recompiling.

2. If the printer is properly documented, it should

be immediately obvious what are the correct

values for all these constants.

At present I do not have enough experience of

different printers to come near this ideal. In

particular, some printers can download characters.

The problems of writing a program to support this

facility in proper generality are horrible and ghastly.

I have not made any serious attempt yet to tackle

them. There are just a few places where a hook

appears, and I hope eventually to attach actual

routines for downloading.

Some of the more obvious problems of down-

loading are: when can you download? any time?

start of page? or only at start of document? Can

you load one character, or must you load a whole

font at a time? How much memory does the printer

provide for downloading? How efficiently does it

use its memory? What does it do when it runs out?

Can you clear out old fonts to make more space?

What is the format of a download command? What

parameters does it need, in what order, with what

punctuation? In what order must pixels be sent?

Should they be compressed, and how?

Implementa t ion

This program was originally based on D.E.Knuthls

program DVItype, but so many changes were needed

for various reasons that there is not much of the

original code left. The original version of Crudetype

was aimed at a line printer (because everybody has

A \\{fix\-word) whose respective bytes are (a,b,c,d) represents the number

$$x=\lef t\{\vcenterC\halignC$#$, \hf il\qquadif $#$\hf il\cr

b\cdot2~{-4)+c\cdot2~{-12~+d\cdot2~~-20)&a=O;\cr

-l6+b\cdot2~{-4~+c\cdot2-iG+b\cdot2̂ C-4)+c\cdot2̂ o+d\cdot2̂ C~-l2)+d\cdot2~{-2O~&a=255.\cr~~\right.$$

Figure 1. DVItype output can become illegible in critical places.

160 TTJGboat, Volume 7 (1986), No. 3

these), and was written on the VAX/VMS operating

system. It is intended to be easily adaptable both

to other systems and to other printers. So most

of it is written in standard PASCAL. (It is not

possible to tell exactly how much of it is standard,

as we do not have a certified compiler.) But

in some places, it is necessary to use extensions.

In particular, Crudetype must read the font files,

whose names are dynamically specified. That would

be impossible in pure PASCAL.

Crudetype also uses non-standard code in order

to talk to the user's terminal. It asks for the name

of the DVI file, and for the first page and the number

of pages to print. If an operating system forbids

terminal interaction, the installer will have to find

another way to give the program this information.

As file handling is inevitably system-dependent, I

have here allowed myself a lot of latitude in using

VMS-specific procedures. If Crudetype cannot

find a file, it will ask the user for another name.

On the other hand, all files are read and written

sequentially, and I have got rid of all uses of the

default case statement. The intention is that all

the system-dependent stuff goes near the top of

the file, and all printer-dependent stuff at the end.

Then with any luck you can merely concatenate

Change files for the local system and the local

printer, instead of having to merge them. All the

code that is known to be non-standard has been

carefully segregated from the rest of the program.

It amounts to about 20 lines out of 750.

It is clearly impossible to predict what difficul-

ties will appear in trying to install Crudetype on

other systems. It would seem to be advisable to

get the line printer version working before trying

to adapt it for any other printer. To try to ease

the process, I propose to distribute some test files

with the program; each of these will come with

the corresponding DVI file and (lineprinter) output

file. I have also written a change file for a Phillips

printer; but it should be understood that this file

only works on a particular model of Phillips GP300,

with a particular suite of resident fonts. It is only

intended as a pattern to show what a printer change

file should look like.

can be rewritten in a much more readable form. To

begin with, 192 of these cases are very similar, so

let's get rid of them first:

(Get DVI command and execute it 7) r

corn t get_byte(dvi);

if corn < 128 then

begin set-character (com); move-right;

end

else if (corn 2 171) A (corn < 234) t h e n

change_jont(com - 171):

else

See also section 8.

Now we come to the case statement proper.

The macro four-cases generates 4 case labels, and

generates a procedure call that reads a parameter

from the DVI file and assigns it to par. A similar

macro is needed for the movement commands; it

has to construct a signed parameter.

(Get DVI command and execute it 7) +r

case corn of

four-cases (128)(set_character (par):

move-right ;);
132: begin set-rule; move-right;

end;

four-cases (133) (set-character (par));

137: set-rule;

138: do-nothing;

139,247,248,249: bad-dvi ('byte : u', corn : 1,

',outuofucontext,inside,page');

140: end-page + true;

141: push;

142: pop;

move-cases (143) (h t h + ~ a r) ;

147: { WO)

h + h + w ;

move-cases (148) (w t par; h t h + w):

(about 15-20 lines omitted here 0)

end;

Because all the cases are thus collected together, it

is now very easy to check that the case statement

has 64 labels in the subranges 128 . . 170 and

235 . . 255. Therefore all 256 possible values of corn

produce a defined action; so we can correctly omit

the default case statement. The resulting code -

Translat ing t h e device-independent file is not quite as beautiful as this example suggests.

This part of DVItype is long and complicated, and
When Crudetype is scanning through the file and

I have tried to tidy it up, using ideas originally due
looking for the first page to be printed, it must

to Prof. M.Doob. DVItype has seven functions for
discard DVI parameters instead of using them, and

reading integers from the DVI file and two more for
so a second if statement and case statement are

the TFM file. By passing suitable parameters, these
needed. But DVItype also has a second case

have been reduced to three. DVItype processes each
statement (in function first-par), so I maintain that

this presentation is still an improvement.
DVI command via a very big case statement. This

TUGboat, Volume 7 (1986), No. 3 161

Coding schemes

A crude printer cannot possibly print the full range

of characters that TEX uses. So Crudetype tries to

map each character onto the nearest equivalent in

the printer's fonts, if any tolerable mapping exists.

The mapping is defined in an array called codes.

Since all characters on most crude printers are the

same size, we need one piece of data, not for each

TEX font, but for each coding scheme. For each

character c in a font whose coding scheme has

internal number s, code [s, c] defines the correspond-

ing printer character. Also, known-schemes[s] is a

character string which usually contains the coding

scheme of that TEX font.

So when a font is read in, we try to determine

which of the known-schemes it belongs to. If the

printer is not absolutely crude, then it might have

italic or bold fonts. Then we might want a coding

scheme to correspond to a single TEX font. So first

we look at the font name and see if that matches

any of the known-schemes. But if the printer is

fixed-width, then all fonts of the same face are

the same size, so we drop the font size digits off

the end of the name. If the font name is not in

known-schemes, then we try again with the scheme

given in the TFM file. If that fails, then the font is

deemed to be unprintable and we do not load it.

Several crude printers (e.g. daisy-wheels) have

only a limited set of characters, which cannot

be extended. Sometimes you can generate more

characters by overstriking. Crudetype can be

programmed to do this, by placing suitable entries

into a table called ligatures. The name is chosen

by analogy with the lig-kern programs in TFM files,

but the data is completely different. When one TEX
character maps onto several printer characters, we

call the image a 'multi-character' command.

Getting data into the codes array is clearly a

very long and error-prone job, so special procedures

were written t o reduce this. First suppose that

a run of consecutive characters in some 'RL'EX font

maps onto consecutive characters in a printer font.

The procedure alphabet will enter the whole run at

one go. For example, to set up the AMTEX fonts

(nearly ASCII) for a line printer, do:

known-schemes [l] +-

. 'TEXUEXTENDEDUASCII1j I g 4 1 H I I g j 1 1 ,
alphabet (32,95,1,1,32);

The Standard requires that the coding scheme name

be padded to the declared length. The parameters

of alphabet are, in order, first character of TEX font,

length of run, internal number of TEX font, printer

font, and corresponding character of printer font.

Clearly, alphabet will only cover a very small

part of the problem. The next procedure called

row enters data into a subset of the codes array

corresponding to a single row of a font. In the

standard font tables, row number m is the subrange

8rn . . 8m + 7 of a font. It is hoped that when the

calls of this procedure are written out in a program,

the result will be (just about) legible, whereas a

string of statements like codes[i, j].char +- 27; is

certainly not legible.

The main parameter of row is a character string

that consists of 8 'character specifiers' separated by

spaces. So a very simple call of row might be:

row ('uhciiujukulurnur4Jou~, 2,13,1);

(As before, the string must be padded, but I

have here removed the padding.) The numerical

parameters are: 'Q& scheme, row, printer font.

So this call of row will generate row 13 of TEX
scheme 2, (TEX TEXT) which happens to be

the same as the corresponding row of ASCII. In

practice, we would never use row for such a simple

purpose, because we would use alphabet.

There are several escape sequences that need
to go into the row specifier string. Since all the

PLAIN.TEX coding schemes (except the math ex-

tension one) have the upper case Roman characters

in their ASCII positions, these characters will surely

be inserted into codes by the alphabet procedure.

So they are available as flag characters. But the

brackets are also used as flags, as they are so much

more intelligible than anything else. Some charac-

ters have most undesirable effects when used in WEB

strings. So we make upper-case letters stand for

them. 'A' generates an at-sign, 'Q' a single quote,

and so on. 'L' says that the next character must

be used literally. 'C' means that the next character

must be replaced by the corresponding (ASCII)

control character, and there are some further simple

escape sequences.

Now things start to get rather complicated.

row can also be made to generate multi-character

commands, by bracketing several character spec-

ifiers together. Square brackets mean that the

characters inside are to be overstruck, round brack-

ets mean they are to be typed horizontally, and

angle brackets mean that they are to be typed

vertically above each other.

TT'Ghoat. Volume 7 (1986). S o . 3

So to generate a Macsyma style summation

sign, which looks something like this:
---- ----

\
>

/
---- ----

we have to insert the following mess into the row

specifier string:

<wlJu [====I \ \ [SL>] / [====I >

The 'UUUU' is needed to get correct vertical

alignment. The 'L' is needed to prevent the

following > being taken as an angle bracket. In

order to keep track of what is happening and to

provide some diagnostics, row has to impose some

rather arbitrary rules of syntax. One of these is

that character specifiers may not contain spacss.

The 'S' is an escape for a space, and it is needed

here to push the > one step right into its proper

position.

Movements

This section considers the problem of deciding

where each character has to be printed on the

printer's page. This is by far and away the most

difficult (and unsatisfactory) part of Crudetype.

The current version is not a properly designed

algorithm; it is merely a bodge, obtained by a lot

of trial and error. It does seem to give tolerable

results on WEB files, lineprinter, and VMS. We use

these variables:

h is W ' s cursor'. I t gives the 'exact' horizonta!

position (in D V I units) generated by D V I com-

mands. This is always updated exactly as in

DVItype.

hh is the 'printer's cursor'. It marks the position

(in the printer's units) where the next charac~er

will be set.

The obvious method is to multiply h by a factor

h-conv and round to nearest integer. This gives

extremely bad results, because the characters, in

T&f fonts vary in width, while many crude printers

have fixed-width characters. If h-conv is too large,

then you get spaces in the middle of words. If

h-conv is too small, then successive characters in

a word get printed on top of each other. With an

intermediate value of h-conv, you get both effects

a t once; in other words, the characters in fonts

vary so much in width that the 'loo large' and

'too small' values of h-conv overlap. A great deal

of jiggery-pokery is then needed to get a tolerabk

result (well, sometimes!). It is obvious that as soon

as we begin t o tamper with the exact rounding

algorit~hrn, h and hh will start to drift apart, so we

nymt try to bring them together again. \Ye want all

the charact,ers in each word to come together, and

we want the accumulated drift to appear in spaces

between the words.

So a second attempt to evaluate hh is as

follows. On a crude printer. all simple characters

have the same width (w, say), and usually w = 1.

But multiple characters have different widths. So

one of the things row must do when assembling a

multi-character is to replace u: by t,he correct value.

Rules are in effect multiple characters. After we

set each character. we increase h by the width and

hh by w. Then we record the new value of h as

last-h, and ignore all further changes in h until

mother character (or rule) is due to be set,. (This

'lazy evaluation' on hh is not mere sloth but an

essential part of t,he process). If h - last-h is small.

we leave hh fixed. If h - last-h seems large enough

to be a space between words, then we force hh to

increase. If h - last-h is really large, we replace hh

(provisioi~al!~) by:

new-hh + round (h * h-conu);

This second attempt works a lot of the time on

plain text, but often fails when makes a large

backspace. In fact seems nearly always to

do large backspaces by pop rather than an explicit

move left. Q X oft,en expresses boxes by a sequence

like this:

PUSH Move right - - - - - > [s e t characters] POP

P t t
followed by a move either to one of the positions

marked by the arrows: or close by. I try to deal with

this by dropping markers at each of the arrowed

positions. The right hand arrow is marked by

last-lz. The left hand arrow has just been popped

off the stack; sime the stack is realised as an array,

it will be 'just above' the top of the stack. The

centre arrow will be marked by left-h, which is

defined as the value of h just before setting the first

character after the latest push. Each marker has a

corresponding value of hh attached. Suppose that

we are about to set a character, and h - last-h is

large and negative. Then we compare the current

valw of h with all the markers. Let m be the closest

of t ,hes~ . and rnm the corresponding rounded value.

Then we re-round new-hh to force it to lie on the

'correct' side of mm. This seems to work fairly

often, but it does sometimes slip.

Setting the vertical position on a crude printer

is also very hairy. 'l&X expects subscripts to be

much smaller than the main line. so it drops them

by only a very small amount. On a crude printer,

the subscript has to be the same size. and the

TUGboat, Volume 7 (1986), No. 3 163

drop would normally get rounded to zero; it must

be forced to be nonzero. When characters are

underlined, m drops by a comparatively large

amount, while the printer's underscore must be

printed on the main line. So if v is the 'exact'

vertical position and vv the rounded position, vv

cannot be any monotonic function of v. What I
have done is to declare a separate variable rule-vv,

used only for vertical rules. As with horizontal

moves, any large vertical move sets both vvs equal

to the rounded value of v.

Sorting the page

Although 'crude' printers differ very much in their

capacities, one thing they nearly all have in common

is that they cannot feed the paper backwards. Some

printers cannot backfeed at all; some tear the paper,

and others let the paper slip and so lose position.

Therefore it seems to be essential to process each

page as follows: first copy the page into a suitable

structure, then sort it by vertical and horizontal

position, then print it.

The choice of method for sorting gave a lot

of trouble. First I wrote the data onto a file and

used the VMS library routines, but that had to

be abandoned as not portable. Then I wrote a

merge sort procedure which was amazingly slow. I
believe this was because the files were being held

on disc, and the disc transfers were slow. Shell

sort was fast but not stable; I eventually chose

a merge sort from 'Algorithms', by B.Sedgewick

(Addison- Wesley, 1983). The algorithm is: chop

the list in half, call sort recursively on each half,

then merge the sorted halves.

The type of object that this algorithm sorts is

a linked list. This could be represented either by a

big array or by dynamic storage. Neither is ideal,

because the size of a page is unknown, so whatever

size you declare for an array is bound to be either

too big or too small; and some PASCALS apparently

do not implement pointers. So I have expressed
everything in terms of certain macros, defined in

the system dependent part of the program. Then

Crudetype can be switched from heap to array

merely by redefining these. For example, if p is

logically a pointer, then the thing it points to will

be defined as follows:

define image (#) = #t
when using dynamic store, and as:

define image (#) = pool [p]

when using an array, here called pool. This

illustrates one of the most valuable features of

the WEB system: WEB not only makes it much

easier to write programs, but it allows one to

make complicated and far-reaching changes with

much less difficulty than anybody could reasonably

expect.

Known defects (July, 1986)

First it must be emphasised that this is an experi-

mental version, offered 'as is' with no guarantee of

performance. I do not have the time or manpower

or machines to run adequate tests. Bug reports

would be welcome, but the likeliest response will be

something like "yes this is a bug and I do not know

how to fix it; meanwhile, you have the source." Bug

fixes are more welcome! That said, the principal

known defects are:

1. Bad line breaks. When passed through

WEAVE and m, Crudetype contains lots of these.

It is of course perfectly possible to suppress bad

breaks by inserting lots of no-break or force-break

tokens into the WEB file, but I think it would

be completely foreign to the spirit of 'I'EX to do

this. There ought to be a better way, and I hope

somebody will tell me what it is.

2. Horizontal positioning. As explained above,

this problem is very difficult, and I have only been

able to produce a bodge that works sometimes. It

is bound to fail sooner or later.

3. Downloading. Crudetype cannot support

printers that can download characters. This is

most unfortunate because it very severely limits the

range of printers for which Crudetype is useful.

4. Accents. At least one make of printer does

not provide accents, but accented letters. To print

ii, you must send something like this:

< E X > [2w (that means Select German)

1 (an umlauted u)
<ESC> [low (Select ASCII) .

It would be perfectly possible to make row generate

this, but the real difficulty is that there is no obvious

way for Crudetype to determine what character has

been accented. A similar difficulty would arise

with underlined characters, if one wanted to use

Crudetype as a previewer (say, on a VT-100).

An underlined character will generate character,

backspace, underscore, and the underscore erases

the character. Another problem that will make it

difficult to use Crudetype to preview is that in order

to conform to the Standard, it reads the DVI file

sequentially. But any decent previewer must surely

provide a Go to Page n command. So although the

program makes some vague references to the alleged

possibility that it might be used with a VDU, this

is not yet really practical.

