
TUGboat, Volume 11 (1990). No. 2

Janusz S. Bien

The layout

of the proposed CM font extensions

Fonts

Circular Reasoning: Typesetting on a Circle,
*

and Related Issues
l%

Alan Hoenig

Owing to the generality of both 7&X and META-

FONT, it's easy to typeset in and on circles. Here's

how.

The METAFONT Part

7&X can't actually turn characters on their side; we

ask METRFONT to create special fonts where each

character in the font is rotated around its reference

point (the lower left corner of the bounding box

of any character). Then 'l&X properly positions

characters from the rotated fonts to achieve the

illusion of circular typesetting. We need one rotated

font for each position on the circle.

What does it mean to typeset characters around

the circumference of a circle? I imagined a regular Figure 1. What this article is about.

184 TUGboat, Volume 11 (1990), No. 2

polygon inscribed in the circle. The vertices of

the polygon touch the circle from the inside, and

the faces of the polygon form bases on which each

character sits. Since each base is the same length

as any other, I abandoned the concept of variable

width typesetting on the circle; this accounts for

the visually unsettling appearance of some circular

typesetting. Later we will center each character on

its base.

Let the bases be numbered from 0 to n - 1;

there are a total of n sides to this polygon. (It's

more convenient to label the faces starting with 0
rather than 1.) Figure 2 shows a portion of such

a circle with the first few faces. Notice that the

zero-th face is at the "nine o'clock" position on the

circle; that's because we read from left to right.

Figure 2. The inscribed
imagine placing rotated
bisects its face.

n-gon on which we
letters. The point B

For this article, I generated a sequence of

rotated cmbxl2 fonts. and if we let b = 12pt , and

imagine there to be room for 32 characters on the

circumference of the circle, then the circle's radius

must be 61.21 pt.

This follows from Figure 2 since

b/2 = r sin(AO/2) .

If n is the number of faces in the inscribed polygon,
then A8 = 27rJn or A8/2 = r / n . Given n = 32
(then A0 = 11.25') and b = 1 2 pt, we must have
r % 61.21 pt.

Recall the way METAFONT files are organized.

Parameter files (such as cmbxl2.mf) call driver

files (such as roman.mf), which contain further

details about the organization of the particular

font. Finally, this driver calls several program

files containing the instructions for generating the

actual characters in the font. We will need to

make changes to the parameter and driver files; the

program files remain untouched.

I took the file cmbxl2.mf and made 32 copies

of it, named cmbx1200 through cmbx1231. The

idea is that file cmbxl2nn.mf generates the font

whose letters are rotated to stand on face n n of our

inscribed polygon. Make a copy of roman .mf, and

call it roroman .mf (a rotated Roman font driver).

The changes to these files are essentially those

which control the rotation of the font. The proper

positioning of these characters involves knowledge

of the trigonometric functions (sines and cosines) of

certain angles. METAFONT does trig calculations

very well. whereas l)?J does them not a t all.

Therefore, we also need to pass the necessary

trigonometric information to TJ$ for its use. We

do this using the f ontdimen mechanism.

Any font has several global characteristics that are
helpful in typesetting. In a non-math font, these
include things such as the width of a quad, the
amount of stretchability of an interword space, and
so on. These necessary quantities typically occupy
positions f ontdimenl through f ontdimen7, but it's
possible to create as many fontdimen parameters
as needed. Note, for example, that if METAFONT
stores a value of 1 (say) in f ontdimenl0, then 'l'@

will read \f ontdimenlo for that font as 1 pt. T)jx
appends units of points to METAFONT's numerical
fontdimen values.

Changes to Files C M B X 1 2 n n . M F

The parameter files need few changes. At the

beginning of each file, modify the comments to

remind yourself of the changes you will have made.

I also adjusted the value of the parameter ligs = 0

to suppress ligatures. The last line of the file should

be generate roman; change that to read

generate roroman.

The remaining changes are new lines which imme-

diately precede this line, and they should look like

this:

numeric wedge-angle;

wedge_angle=360/32;

numeric face; face=O;

numeric rotation-angle;

rot at ion-angle=

90- (face+. 5) *wedge-angle ;

fontdimeng: face, rotation-angle;

f ontdimenl I :

sind wedge-angle, cosd wedge-angle;

fontdimenl3: % for r=61.21pt
sind(rotation-angle),

cosd(rotation-angle) ;

fontdimenl5: % for r=30.61pt
sind(90-2 (f ace+ .5) *wedge-angle) ,
cosd(90-2 (f ace+ .5) *wedge-angle) ;

fontdimenl7: % for r=15.30pt
sind(90-4 (f ace+ .5) *wedge-angle) ,
cosd(90-4 (f ace+ .5)*wedge_angle) ;

TUGboat, Volume 11 (1990), No. 2 185

This puts various parameters in fontdimens nine
through seventeen. The rotation angle is the angle
by which we need to rotate a letter from the vertical
so it will sit on its proper face on the underlying
n-gon. The rotation is done in a counter-clockwise
direction, as per the usual METAFONT convention. -
In figure 2, angle AOB is the rotation angle for the
letter that will sit on face 1. Notice that line OB
bisects the wedge angle and is perpendicular to the
face, which it bisects.

These lines should be the same in all of the rotated

font parameter files, except for the line defining the

value of face. In file cmbxl2nn, the appropriate

definition should be f ace=nn.

Changes to roroman.mf

METAFONT can rotate the elements it draws as a

matter of course, so we need only the following few

alterations to roroman .mf.

currenttransform:=currenttransform

ro t a t ed ro ta t ion-angle ;

def t-=transformed

current t ransform enddef;

These statements should appear immediately fol-

lowing the line

mode-setup; font-setup;

and in any case before the sequence of input

statements that follows.

METAFONT's currenttransf orm applies a trans-
form to all the pictures it generates. We simply
define this transform to include a rotation by the
current value of the rotation angle, and META-
FONT does the rest.

Thirty-Two New Fonts

Now, generate 32 new fonts. The METAFONT

command line you need is

mf \&cm \mode=corona; input cmbxl200

and so on for the remaining 31 fonts. Minor

variations will be necessary depending on your

particular system. For example, you will need to

select the proper mode name. In PCMETAFONT, for

example, you conclude the line with the switches

/a=99/t. Don't forget to change input cmbx1200

to input cmbxl201, and so on. After creating

each METAFONT font file, you need to transform

the generic font file to a pk file via the utility

gftopk; typically the command line to do that
looks something like

gf topk cmbx1200.300 cmbx1200.pk

Finally, move the tfm file to wherever all your

other tfm files are (probably in a directory named

something like \tex\textfms) and move the pk

files to their proper directory, something like

tex\pixel\dpi300 for laser printer fonts; change

the '300' to the resolution of your printer. (If your

pixel files are organized according to the older con-

vention involving numbers like 1500 and so on, the

determination of where to place these fonts is less

straightforward. In general. though, these font files

should reside in the same region of your hard disk

as do the fonts you use for normal 10 pt, \magstep0

typesetting.)

I confess I only generated the uppercase letters

to these rotated fonts to save my time and disk

space. If you elect to follow suit, you'll have some

minor additional changes to make to roroman-

namely, comment out all but the first input state-

ment in that file. You'll probably want to create

batch files to generate your fonts, convert them to

pk form, and move them to the proper directories.

A 'I&jX Digression

8

9
we can do something

simpler than circular

typesetting. We will first

typeset on an angle. To type-

set up a 45-degree incline, we

need a special font which I named

zcmrl0. I deviated from my naming

scheme because no face is inclined a t

the proper angle when there are 32 faces in

the polygon. In zcmrlO.mf, let the rotation

angle be 45 (degrees). Most of the l)$ macros

that are responsible for placing the letters properly

appear somewhere in The W b o o k ; as is so often

the case, doing something interesting with l$J is a

matter of the artful extraction of the relevant bits

and pieces from The W b o o k .

The macros depend on a \ge t fac tor macro.

It takes a single argument, namely a particular

fontdimen for a certain font, and returns the value

of that fontdimen stripped of the units of points.

This macro is largely adapted from an example in

Appendix D (page 375). Watch closely.

186 TUGboat, Volume 11 (1990), No. 2

(\catcode1p=12 \catcode't=12

\gdef \\#lptC#l))

\let\getf actor=\\

Thus, if \the\f ontdimenl\t enit is '0.25pt', then

\getfactor\the\fontdimenl\tenit

will yield 0.25 in some context where 0.25 makes

sense.

We have to sidestep m ' s typesetting mech-

anism, since we are not setting characters on a

common baseline, and we appropriate part of the

solution to exercise 11.5, in which we learn how to

seize individual tokens in a list. Here's the relevant

code.

\def\dolistC\afterassignment

\dodolist\let\next= 1

\def\\(% next char letter or space?

\expandafter\if\space\next\addspace

\else\point\next\fi)

Macro \addspace (see below) is responsible for

leaving spaces in the angle copy. The macro \point,

drawn from Appendix Dl is used to position the

current character. In order to use these macros, we

need to initialize certain registers and fonts.

\newdimen\x \newdimen\y

\def\initialize(\global\x=Opt

\global\y=Opt 1

We will depend on \newcoords to compute

the coordinates for the reference point of the next

character. We use analytic geometry to determine

Ax = - sin B \wdO

Ay = cosB \wdO

where 6 is the angle of inclination of the type from

the vertical (here 6 = 45") and \wdO is the width

of the current character or space which is in \boxO.

Then, x c x + Ax and y t y + Ay.

\font\anglefont=zcmr10 % rotated font
\newdimen\DeltaX \newdimen\DeltaY

\def\newcoordsC%

\DeltaX=\expandaf ter\getf actor

\the\f ontdimenl4\anglef ont \wdO

\DeltaY=\expandafter\getf actor

\the\fontdimenl3\anglefont \wdO

\global\advance\x by-\DeltaX

\global\advance\y by\DeltaY)

\getfactor strips the 'pt' from fontdimens 13

and 14 and uses the resulting numbers -values of

sine and cosine for an angle - as coefficients of the

width of the box containing a space.

Here is the TEX code for \addspace, which

determines how much space to leave between words.

\newbox\spacebox

\setbox\spacebox=\hbox~\)

\def\addspaceC\setboxO=

\copy\spacebox \newcoords)

The \point macro that I use is slightly different

from the one Donald Knuth provides in Appendix D.
Here is its code.

\def\point#l(%

\setboxO=\hboxC\anglefont #I)%

% used by \newcoords
\setbox2=\hbox(\anglefont #l)%

% used for typesetting
\wd2=0pt \ht2=Opt \dp2=0pt

\rlapC\kern\x \raise\y \box2)%

\newcoords)

Finally, the \angletype macro puts all the

pieces together.

\def\angletype#l(\initialize

\leavevmode\setboxO=

\hbox~\dolist#l\endlist)%

\box0)

The instruction \angletypeCAngle of Repose) was

sufficient to typeset the subject of Figure 3.

Figure 3. Typesetting at an angle.

Angle typesetting might be useful when you

prepare advertising copy, and when you need to

typeset column headings on tables with very narrow

columns, as in Figure 4.

Typesetting on Circles

Once the angle-setting macros are in place, we

need to alter details to accomplish typesetting on a

circular path. On a circle, things change as we move

along the circumference - we have to keep track of

our position along the circumference, and at each

new face we have to select the appropriate font.

The macros \getf actor, \dolist, \dodolist,

and \ \ remain the same. (In \\, we rename

TUGboat, Volume 11 (1990)' No. 2

Figure 4. A portion of a table with narrow
columns. This is a portion of a table showing
quality of recent vintages. The numbers give
quality in a scale of 1 through 7; 0 means the
wine is unrated.

\addspace to \newcoords.) The first new macro

will determine the coordinates to the next vertex

of the underlying polygon on which we place each

type. We identify these coordinates as x, and

yi. First we initialize the coordinates. The initial

vertex (xo, yo) has coordinates (-T, 0). \f aceno is a

numeric register containing the current face number

(recall that we draw a correspondence between

position along the circumference and a particular

face of the inscribed 32-gon). Various radius-like

quantities will later enable us to typeset around

circles of varying radius.

Given vertex (xnryn) , we can get the next vertex

(travelling clockwise) via

x,+l = x, cos A0 + yn sin A0

yn+l = -xn sin A0 + yn cos A6

(see, e.g., David Salomon's article in TUGboat 10,

no. 2 , p. 213, July, 1989). We calculate these

quantities using registers \dimeno. \dimenl, and

\dimen2.

\dimeno=-\expandaf ter\getf actor

\the\fontdimenll\anglefont \x

\dimen2=\expandafter\getfactor

\the\fontdimenl2\anglefont \y

\advance\dimenO by\dimen2

\global\x=\dimenl \global\y=\dimenO)

\def\nextpoint{\nextpointt

\preparefornextface)

\let\newcoords=\nextpoint

\newcount\lastface \lastface=31

\def\preparefornextface(%

\global\advance\faceno by 1

\ifnum\f aceno>\lastf ace

\global\f aceno=O

\message{There may be too many

letters in your circular message!)%

\else \ifnum\faceno<lO

\font\anglefont=cmbxl20\the\faceno

\else \font\anglefont=cmbxl2\the\faceno

\f i \f i)

Macro \preparef ornextf ace changes fonts for the

next face of the underlying polygon, and uses a

numerical register \f aceno for that purpose.

We won't use the coordinates (x,, y,) for type-

setting, because that would put the reference point

of the type at the vertex of our underlying, imagi-

nary 32-gon. It is much better to center the type on

its base. The centering macro \setonbase assumes

that \box2 contains the current character and the

corrected coordinates are (xi, yi)

If w is the width of the type and b is the length of

the base. then the vector Ar

b - w
A T = -

2
(cos 0, sin 0)

provides the correction to r = (x,, y,) so that if we

place the reference point of the type at the point

r' = r + A r , then it will be centered on that base.

0 is the rotation angle.

We can easily get A r from r since the two

vectors are perpendicular to each other. Given that

r = T (- sins, coso), then either of &(cos 0, sine)

are perpendicular to it. Since A r represents an

offset in the clockwise direction, we choose the +
sign.

\newdimen\xprime \newdimen\yprime

\def\setonbase(% curr char in \box2

\xprime=\x \yprime=\y

\baseof f set=. 5\base

\advance\baseof f set by-. 5\wd2

\dimenO=\expandafter\getfactor

\the\fontdimenl4\anglefont \baseoffset

\dimen2=\expandafter\getfactor

188 TUGboat, Volume 11 (1990), No. 2

\the\fontdimenl3\anglefont \ b a s e o f f s e t additional trigonometric values in cmbxl2nn.MF

\advance\xprime by\dimenO so that an enhanced version of \setonbase cali

\advance\yprime by\dimen2 3 compute Ar properly. That's why we included

Finally, we need a altered \point information for fontdimens 15 through 18 in the

macro, and \circumt ype puts everything together. METAFONT parameter

\def\circumtype#l(%

\ i n i t i a l i z e

\setboxO=\hbox(\dolist#l\endlist~%

\ l eavemode \box0 3

Figure 5 shows the alphabet around a circle.

If the irregular rhythm of the type due to placing

variable width type at equal intervals bothers you,

you might want to consider using a monospaced

font like cmt t l0 instead of the cmbxl2 that I used.

Figure 5. Circular typesetting.

Actually, the changes to \setonbase are extensive

and I have not done them at this time. If you

decide you want to, here are some things to keep

in mind. When we shrink the radius, we need

to increase the wedge angle. Halving the radius

requires doubling the wedge angle (provided the
length of the base remains constant), and so on.

At a half radius, for example, we skip every other

vertex of the original 32-gon. In Figure 6, we set

a letter on faces AB and (closer to the center

of the circle, though) while skipping faces BC and -
DE. However, we need fontdimen information

from the skipped fonts to get information about
the vectors Ar. In Figure 6, OB is perpendicular

to AC. We need to invoke and save information

from that skipped font.

Figure 6. Typesetting when we change the
radius.

However, it's easy to do "poor man's" typesetting

around smaller circles if we adopt a "dummy"

version of the \se tonbase macro. Here's all we

need do.

\r=\Radius

\def\newcoords{\nextpoint

\nex tpo in t)

\def\setonbase{% dummy d e f ' n

\xprime=\x \yprime=\y}

To typeset around the smallest circle, simply set

and

Smaller Circles \def\newcoords(\nextpoint \nextpoint

Because 32 is divisible by four, it is easy to typeset
\nextpoint \nextpoint 3

on circles that are one-half and onequarter the Because of the do-nothing version of \setonbase,

radius of the original circle. Such cartouches would the reference point of each letter coincides with the

accommodate 16 and 8 characters around their

circumferences. To do this right, we would need

TUGboat, Volume 11 (1990), No. 2

Figure 7. Typesetting around small circles.

vertices of the underlying 16-gon or octagon. Some-

how, though, at smaller radii, this is less visually

unsettling than we would expect (see Figure 7).

On the Inside of a Circle

Suppose we wanted to typeset around the inside of

a circle. In light of the foregoing, one approach

is to simply "METAFONT up" a new set of 32

fonts using a slightly different expression for the

rotation angle, but it is possible to use the fonts we

already have. For example, on face 1, we use font

cmbxl201 to determine type placement information,

but we typeset the letter using the font that would

normally appear diametrically opposite it (in this

case, face 17). Given a face n, its opposite face no,,

must satisfy

In - noppl = N/2
where N is the total number of faces and both n

and nOpp must be non-negative integers less than

N. (Remember, N = 32 for our largest circle.)

When we use the font that belongs at the opposite

face, we need to keep two points in mind. First of

all, the reference point of the opposite font lies not

at vertex n, but at vertex N + 1, the next clockwise

vertex (think about it). We can take this into

account in our initialization macro. When using

opposing fonts, the initial position of the type on

face 0 is not at (- T , 0) but at (- T cos A0, r sin A@).
Because of the displacement of the reference

point, the vector AT that the \setonbase macro

uses must point in the counterclockwise direction.

These changes dictate the following new macros

which contribute to the construction of macro

\circintype.

\the\fontdimenl3\anglefont\baseoffset

\advance\xprime by-\dimen0

\advance\yprime by-\dimen2

\oppface=\faceno \advance\oppface by0

\ifnum\faceno<l6

\advance\oppf ace by16

\else \advance\oppface by-16

\f i

\ifnum \oppface<lO

\font\oppfont=cmbxl2O\the\oppface

\else

\font\oppfont=cmbxl2\the\oppface

\f i \setbox2=

\hbox{\oppfont \the\currchar))

\def\ininitializeC\font\anglefont=

cmbx1200 \global\faceno=O

\x=-\expandafter\getf actor

\the\fontdimenl2\anglefont \r

\y= \expandafter\getf actor

\the\fontdimenll\anglefont \r)

\def \circintype#l(\bgroup

\let\setonbase=\setinbase

\let\initialize=\ininitialize

\initialize

\setboxO=\hbox~\dolist#l\endlist)%

\leavevmode\boxO \egroup)

Figure 8 shows what to expect from inscribed

circular typesetting.

Figure 8. Typesetting inside a circle.

Incidentally, here are the commands I used to

generate the top of Figure 1.

\circumtype(%
THIS IS CIRCULAR----------------

3%
\circintype{% -------------------

YHPARGOPYT-"'1%

TUGboat, Volume 11 (1990), No. 2

I suffered plenty of setbacks en route to a

working set of circular macros. Sometimes the

results of faulty macros were interesting in their

own right. Take a look at the best such mistake in

Figure 9.

Figure 9. Mistake.

If you try this stuff yourself, note that circular

typesetting may throw your previewer and device

driver for a loop (apt?). You have been warned.

o Alan Hoenig
17 Bay Avenue
Huntington, NY 11743

(516) 385-0736

Graphics

On the Implementation of Graphics

into TEX

Gerhard Berendt

1 Abstract

The problem of implementing more complex pic-

tures than are provided by the IPm p i c t u r e en-

vironment into a typical PC version of W is dis-

cussed. In the first part of the article (Sections 2

and 3) a solution is presented which circumvents the

usual limitation of the restricted main memory of

rn and respects the moderate hash size of the PC

versions of W. This solution remains, however. to-

tally within the frame of m. In the second part

(Sections 4 to 7) a solution to the problem is given

which makes use of Postscript within the W envi-

ronment.

2 Introduction

While 7&X is a very powerful tool for producing

mathematical and technical texts, it has its well-

known deficiencies as far as the implementation of

graphics is concerned. The problem is twofold:

- The hash size of about 3000 for a typical PC

version of TEX limits the complexity of macro

packages which implement graphics. It is,

e.g.. impossible to add the rather comfortable

F'ICTEX macro1 package to IPl$X because of

an overflow of the hash size. In order not to

surpass the given hash size, it is therefore nec-

essary to use a more moderate graphics macro

package. if the I4W environment is obligatory.

Our solution to this problem will be presented

in the next section.

- Another more subtle problem results from the

fact that even a picture of only moderate com-

plexity -if it is not produced by characters of

special fonts (as is the philosophy in L A W) -

might overflow the main memory of W. It is

then impossible to compile a page which con-

tains this picture. The only way out of this

difficulty is to compile text and picture sepa-

rately and either to combine the two dvi files

afterwards or to print text and picture in two

runs.

In the first part of this article, we present a

compromise solution to both problems which:

enables the user to produce texts plus included

pictures of moderate complexity; and

needs nothing but I4W running on a P C to-

gether with a small graphics macro package, a

parameter file extraction program and (option-

ally) another utility program which automates

the creation of the picture input.

Our solution relies neither on special output de-

vices or files (e.g. laser printers or Postscript files)

nor on drawing programs or special picture for-

mats. Instead, the pictures are drawn within the

I4m p ic tu r e environment which is enriched by a

few graphics macros from the extended epic style.

M.J. Wichura, TUGboat 9, no. (2) , p. 193,

1988

