
TUGboat: Volume 11 (1990), No. 4

[lo] The temporary buffer is appended to it.

[11] The \ v s p l i t command works by splitting a

vbox at a permissible point. If the insertion material

is made up of line boxes, it will be split between

lines, not in the middle of a line. Penalties also

control the split. Sometimes a box will be split

a t a point away from where we wish, because of a

penalty that encouraged breaking the box at that

point. However, the material split will be shrunk or

stretched to bring it to the desired size.

[12] Although it cannot do the entire job.

[13] If the amount of marginal notes exceeds \vsize.

some of it will be printed off the page, but will not

be held over to the next page.

1141 Because of the narrow box width, there

will be overfull boxes, but the thick vertical

bars accompanying them can be eliminated by

\overful l rule=Opt .

1151 Things like \hs ize=xxx. \ raggedright , and

\obeylines.

[16] It is not returned to the MVL when the OTR

says \unvbox\midins.

[17] However, outside the OTR it contains. not the

number, but the sum of penalties. of all the heldover

insertions [I l l] .

o David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330
dxsQrnx. csun. edu

Macros

A N e w E d i t o r

Victor Eijkhout

Starting this issue, I've joined the editorial commit-

tee as associate editor for macro affairs (see the re-

verse of the title page for the other members).

The fact that incoming articles about T~Xnical

affairs will undergo my scrutiny does not mean that

there is suddenly a large chance that submitted ar-

ticles will be returned, rubber-stamped 'rejected'.

My job will be to assist authors in creating articles

that are of maximum value to the TUGboat reader-

ship. Often this means that my main concern is .how

well does this article explain whatever it is telling',

rather than 'is this all completely original'. Remem-

ber that rn is not something you read about, it is

something you actually do. The subject matter of

the article is therefore a secondary concern: TUG-

boat is read by beginners and grand masters alike.

so articles need not be very high-brow. In fact, we

need more articles that help the beginners take the

first steps to grand masterhood.

Let these few lines with which I have introduced

myself then also be an invitation to prospective au-

thors: if you have done something new, or if you

have something interesting to say about something

old, write it down. and send it to TUGboat. Should

you have trouble with the finishing touch, send in

what you have and we will discuss it.

Victor Eijkhout
Center for Supercomputing

Research and Development
University of Illinois
305 Talbot Laboratory
104 South Wright Street
Urbana, Illinois 61801-2932. USA
eijkhoutQcsrd.uiuc.edu

Line Break ing i n \unhboxed Text

Michael Downes

In the course of my work (macro writing and

troubleshooting for m - b a s e d production at the

American Mathematical Society) I recently had to

investigate a line-breaking problem in the bibliogra-

phy macros of the documentstyle amsppt, used with

AMS-m. This is a report on the results of my
investigations. Applications where this information

might be useful include (1) implementation in rn
of SGML-style macros with omitted end tags as an

option, and (2) using the width of a piece of text to

choose between two formatting alternatives.

T h e amsppt bibl iography macros

Although they're less sophisticated than BIB^,
the amsppt bibliography macros are simple to use

and provide a certain degree of style independence

(which makes the . t e x file more portable). They

are designed to allow the individual parts of a

606 TUGboat, Volume 11 (1990). No. 4

reference to be specified in any order, with punc-

tuation between the parts and other formatting

supplied automatically. In addition, an individual

field within the reference does not have an ending

delimiter: \paper (used for article titles) does not

have a matching \endpaper, and so on. In SGML

terminology, these would be called structures with

'omitted end tags'. A typical reference looks like

this:

\ r e f \key C 1

\by B . Coomes

\book Polynomial f lows, symmetry

groups, and condi t ions s u f f i c i e n t

f o r i n j e c t i v i t y of maps

\bookinfo Ph.D. t h e s i s

\pub1 Univ. Nebraska--Lincoln

\ y r 1988

\endref

In m, the combination of omitted end tags and

randomly ordered elements (possibly with some

elements absent) is not easy to provide. If it were

required that all the tags had to be present, and in

the right order, one way of obtaining at least the

appearance of omitted end tags would be to define

each beginning tag as a macro with an argument

delimited by the next tag:

\def\key#l\by((process the argument)\by)

\def \by#l\book{(process the argument)

\book)

\def \book#l\bookinf process the

argument)\bookinf o)

and so on. Another approach would be to use ^^M

(carriage return) as the ending delimiter: however,

this would require the user to have each element

on a separate line, and to add percent signs at

the end of each line but the last if an element

were more than one line long-not too impractical

perhaps in the context of a bibliography situation,

but trouble-prone in general.

The straightforward approach of having \key,

\by, etc., be macros with an argument enclosed in

braces would work fine, but doesn't seem to be a

case of true omitted end tags since the closing 3 is

necessary. And it's a little more work for the user

to type the braces.

The amsppt bibliography macros take a differ-

ent approach. using \hbox\bgroup . . . \egroup.

The definition of \by, for example, ends with

and the \egroup to end the box is supplied by

\book, or whatever tag follows next. This stores

the author name in the box \bybox. Each part

of the reference is similarly stored away in a box

instead of being put on the page immediately. The

\endref macro then unboxes all the boxes, using

\unhbox, and sets them in a paragraph in the

proper order.

This method avoids reading the text as a macro

argument, and makes omitted end tags possible,

because during the \ se tbox operation TEX actually

typesets the text, expanding macros along the way.

This is essential if m is to find the \egroup to

close each box.

The problem

Interestingly. it seems that the amsppt docu-

mentstyle was used for more than five years before

the line-breaking problem, which had been present

from the beginning, was identified (by Barbara

Beeton's eagle eye). Most likely. the problem did

manifest itself occasionally during that time but was

dismissed without investigation because it could be

resolved easily by adding a \ l inebreak . What

Barbara noticed was that. in the example given

above, the compound 'bNebraska-Lincoln'' wasn't

breaking properly at the end of a line. The best line

break was definitely after the en-dash. but instead

"Lincoln" was hanging over the right margin. After

she pointed the bad break out to me and we did

some experiments, it became clear that although

hyphenation between letters was working as normal,

after explicit hyphens the possibility of a line break

was disappearing.

Horizontal lists

If you have the complete Chapter 14 of The
m b o o k stored in the "non-volatile memory'' of

your brain then you probably already know the

cause of the phenomenon we were seeing. For those

of you who don't. I'll review some terminology and

ideas.

All characters typeset by TQX are put into

what is called a "horizontal list". Characters and

other elements of a math formula or subformula are

first processed as a math list, but they end up being

transformed into ordinary horizontal list material:

characters, boxes. glue, penalties.

To be more specific, the components of a

horizontal list are:

(1) characters;

(2) glue (usually interword spaces)

(3) kerns (usually adjustments between letters);

(4) discretionary breakpoints (usually discre-

tionary hyphens):

(5) penalties (encouraging or discouraging line

breaks) ;

TUGboat, Volume 11 (1990), No. 4

(6) boxes (\vboxes or \hboxes containing sub-

sidiary vertical or horizontal lists);

and (7) a few other miscellaneous kinds of things

not important in the current discussion.

For line-breaking purposes m does not dis-

criminate between single characters. boxes, or

rules-each of these treated as a box with a

particular width-except that automatic hyphen-

ation occurs only between letters (more precisely,

characters with \lccode # 0; nonletters normally

have an \lccode of 0).

Horizontal lists are constructed either in "hor-

izontal mode" or in "restricted horizontal mode".

The former is the mode used in making ordinary

paragraphs; the latter is the mode used inside an

\hbox. Actually the material of a paragraph also

ends up in \hboxes, because a finished paragraph is

just a stack of \hboxes separated by \basel ineskip

glue; but the horizontal list for a paragraph is dif-

ferent in a few significant respects from a horizontal

list constructed in restricted horizontal mode.

Recall that m optimizes line breaks over an

entire paragraph; the horizontal list of a paragraph

is not broken up into separate lines until the \par or

other paragraph-ending command has been reached.

At that point 7l&X goes through the entire horizontal

list of the paragraph and chooses line breaks based

on the current values of \hsize, \ pa r f i l l sk ip .

\ r ightsk ip , \ l e f t sk ip , \parshape, \ tolerance,

\hyphenpenalty, and other parameters. During

the initial construction of the horizontal list, TEX
adds certain things to help in the line-breaking

process.

These items added to a horizontal list by

TEX are not explicitly present in the input file,

but are inferred by rn based on the context.

Many of the seemingly magical effects of are

accomplished this way: paragraph indentation is ob-

tained by inserting an \hbox of width \parindent

in the horizontal list; and one step in the pro-

cess of automatic hyphenation is the addition of

\discretionary(-)()(> in the horizontal list at

all the hyphenation points determined by QX' s hy-

phenation patterns. These items aren't ephemeral,

they're really there in the finished list, and can be

seen using \showlists.

Because these items are really present in the

finished list, they use up box memory (part of

W ' s main memory). Therefore avoids adding

items unnecessarily. Primarily this means that

in restricted horizontal mode-in the making of

an \hbox- where line breaking is not a possibil-

ity, breakpoint items such as \discret ionarys or

\penaltys that would be added in unrestricted

horizontal mode are omitted.

Since each piece of an amsppt reference is

typeset using \hbox, breakpoints are not added by

7&X to the enclosed horizontal list. This is not a

problem unless you \unhbox the box and reuse the

contained horizontal list to make a paragraph. But

that's exactly what the amsppt bibliography macros

do.

Examples

Here are some examples of output from the

\showlists command, to make it easier to pic-

ture the structure of horizontal lists.

Characters and glue. The word "in", along with
surrounding word spaces:

\glue 3.33333 plus 1.66666 minus 1.11111

\tenrm i

\tenrm n

\glue 3.33333 plus 1.66666 minus 1.11111

Each line corresponds to one item in the horizontal

list. In m ' s eyes \tenrm- the name of the current

font -is not a separate piece of the horizontal list.

but an attribute of the character "i" or "n". The

font attribute is displayed with each character for

informational purposes.

For the numbers given here the units are points;

thus an interword space in this particular font has a

natural width of about 3.33 pt, with stretchability

of 1.67 pt and shrinkability of 1.11 pt. The em-

width of the font is 10 points, so as you can see, the

values correspond to 113 em, em, and 119 em.

Kerns and ligatures. The kerns added by 7QX

in a horizontal list are related to ligatures in that

both of them are dependent on the current font:

If two or more [ordinary characters] occur in

succession, TFJ processes them all as a unit,

converting pairs of characters into ligatures

and/or inserting kerns as directed by the font

information. (m b o o k , p. 286)

Take the word "mode", for example: it has a kern

added between the o and the d, in the font \tenrm

(crnrlo).

And as an example of a ligature, consider the "ff"

ligature in the word "off":

\tenrm o

\tenrm -^K (l i ga tu re f f)

608 TUGboat. Volume 11 (1990), No. 4

The ligature character resides in font position 13.

which is the ASCII location of control-K. When

reads two consecutive L'f"s, it replaces them with

a single control-K character in the horizontal list,

following the instructions in the ligature table for

this particular font. Similarly, the ligature character

for an en-dash in the same font resides in the ASCII

position 123, so in the output of a \ showl i s t s

command it's represented by a left brace:

\ tennu { (l i g a t u r e --)

Discretionaries. The discretionary items added

by TQX in a horizontal list are of two kinds. A

plain \ d i s c r e t i o n a r y is added after every hyphen

character or ligature formed from hyphen charac-

ters. So a more complete picture of an en-dash is

as shown here (using the text "1-9"):

\ tenrm 1

\ tenrm { (l i g a t u r e --)

\ d i s c r e t i o n a r y

\ tenrm 9

As already mentioned, to accomplish automatic

hyphenation, a discretionary hyphen (equivalent to

\discretionary{-){){)) is added at every hy-

phenation point within words, according to m ' s

internalized hyphenation patterns. But this second

kind of \ d i s c r e t i o n a r y is not added at the same

time as the first kind. We'll see the significance of

this shortly.

Penalties and glue. Penalties and glue added be-

hind the scenes in a horizontal list are mainly added

in math formulas. Internally, the automatic spacing

in math formulas is done by adding \g lue items in

the horizont a1 list in the amount of \ thinmuskip.

\medmuskip, or \ thickmuskip. Penalties in the

amount of \ r e l p e n a l t y and \b inoppenal ty are

added after binary relations and binary opera-

tors to allow line breaks. They serve essentially

the same purpose as \d i sc re t ionarys . but unlike

\ d i s c r e t ionarys, which neither encourage nor dis-

courage a break, \ r e l p e n a l t y and \b inoppenal ty

are usually set to some positive value that dis-

courages line breaking. The plain values are

500 and 700, respectively, so that line breaks after

operators are discouraged slightly more than after

relations. The horizontal list representation of the

formula a = b + c looks like this:

\mathon
\ t en i a
\glue(\thickmuskip) 2.77771 plus 2.77771

\tenrm =

\penalty 500

\glue(\thickmuskip) 2.77771 plus 2.77771

\ t en i b

\glue (\medmuskip) 2.22217 plus 1.11108

minus 2.22217

\tenrm +
\penalty 700

\glue(\medmuskip) 2.22217 plus 1.11108

minus 2.22217

\ t en i c
\mathof f

If \mathsurround were, say, 3pt instead of Opt.

the \mathon and \mathof f items would be followed

by the note

(surrounded 3 . 0)

Mathsurround spacing behaves more or less like a

kern of the given amount; if a line break occurs at

the end of a math formula, the spacing is discarded

to keep the line from ending short of the margin.

If you look at the horizontal list using \ showl i s t s ,

you'll see that the \mathof f item remains, but the

(surrounded 3.0) note disappears.

Automatic hyphenation

To summarize what's been covered so far: when l$J
is working in restricted horizontal mode, it omits

all the items that are needed only for line-breaking

purposes - discretionaries after explicit hyphens,

discretionary hyphens, and the penalties after math

relations and binary operators. If the resulting

horizontal list is then \unhboxed and used to make

a paragraph. certain line breaks will simply be

impossible because the breakpoints aren't present.

But one question remains: Why was ordinary

intraword hyphenation still working as normal in

the amsppt bibliography macros? The answer is

that the discretionary hyphens added by to

enable automatic hyphenation are not added at the

same time as the other breakpoints. All the other

kinds of breakpoints are inserted during the initial

construction of the horizontal list. but, striving for

more efficiency, rn tries first to make a paragraph

without resorting to automatic hyphenation: if and

only if this first attempt fails - if line breaks cannot

be found such that the badness of each line is

less than \p re to le rance - rn goes back through

the horizontal list of the paragraph and adds the

discretionary hyphens indicated by its hyphenation

patterns, and goes through another line-breaking

pass. On this second pass it also uses \ t o l e r a n c e

instead of \p re to le rance .

Thus the amsppt bibliography macros first

construct the pieces of a paragraph in restricted

horizontal mode, so that no breakpoints are added:

then the pieces are combined into one long horizon-

tal list and sent to TQX for paragraphing; if the first

attempt at paragraphing fails, T)$ follows its usual

TUGboat, Volume 11 (1990). No. 4 609

process of adding discretionary hyphens, and tries

again to make a paragraph, whereupon hyphenation

works as normal.

Using \vboxes instead of \hboxes

The W b o o k , Appendix D, pp. 398-400, has an

example that uses the technique of \unhboxing to

construct a paragraph out of many short footnotes.

Finding no mention there of hyphenation peculiar-

ities, I wrote to Knuth to suggest that a footnote

about hyphenation might be useful to add in some

future printing, and to ask if there was any way

to provide normal line breaking after hyphens in

unhboxed text: I couldn't think of any solution

short of catcoding the hyphen to be active and

having it do some laborious checking to handle the

possibility of en-dashes and em-dashes (the need to

consider \ r e lpena l t y and \binoppenalty hadn't

even occurred to me). In response Knuth outlined

an interesting alternative: If instead of an \hbox

you use a \vbox with \hsize set to \maxdimen.

the product will be a one-line paragraph. with all

the necessary breakpoints present (because unre-

stricted, rather than restricted, horizontal mode

will be used to construct the horizontal list). There

is an extra level of boxing present, but an extra

unpacking step will take care of that.

Here is a sketch of the m n i c a l details, using

a simplified bibliography scheme with three tags:

reference label \key, author name \by, and article

title \paper.

To start with, some box names need to be

declared:

At the very beginning of a reference, we need to

provide a \bgroup to match the first upcoming

\egroup. We do this by setting a \vbox that will

simply be discarded.

And here's the definition of \key:

Without the \noindent we'd get a box of width

\par indent because we're beginning a paragraph;

this would interfere later when the pieces of the

reference are combined.

Actually, since the macros \by and \paper are

nearly identical. it's better to write a generalized

macro that can be shared by all three:

\def\makerefbox#l#2C\par\egroup

\setbox#l=\vbox\bgroup

\hsize=\maxdimen \noindent#2)

Then the definitions are

\def\key(\makerefbox\keybox\bf)

\def\byC\makerefbox\bybox\rm3

\def\paper(\makerefbox\paperbox\it)

\endref performs the usual sequence \par\egroup

to close the final data box, whatever it may be, and

then unpacks \keybox, \bybox, and \paperbox.

inserting punctuation and space as desired. Since

each unpacking operation is the same, it's best done

as a macro, say \unvxh ("unvbox, extract the last

line, and unhbox it").

\def \endref (\par\egroup

% prel iminary formatt ing

\noindent\hangindent\parindent

% re fe rence l a b e l

(\bf C\unvxh\keyboxl]\enspace

% author name(s)

\unvxh\bybox ,\space

% a r t i c l e t i t l e

\unvxh\paperbox.\par

1

The \bf here is necessary if we want bold []
around the reference key. The contents of \keybox

are already typeset. so we could not change them

to bold at this point if they were not bold already.

The last line of a paragraph ends with three

special items:

\penal ty 10000

\g lue (\pa r f i l l sk ip) 0.0 plus l . O f i l

\g lue(\ r igh tsk ip) 0 . 0

If we made sure \ p a r f i l l s k i p and \ r i gh t sk ip

are zero. by setting them to zero at the same time

as we set \hs ize to \madimen, these items could

perhaps be left in place. On the other hand. if we

remove them, the reassembled reference will more

closely resemble a paragraph typeset naturally, and

furthermore. it will use slightly less of W ' s main

memory. So we remove them using \unskip and

\unpenalty in the macro \unvxh.

\def \unvxh# 1 C %

\setboxO=\vbox~\unvbox#l%

\global\setboxl=\lastbox)%

\unhboxl

% remove \ r i gh t sk ip , \parf i l l s k i p ,

% and pena l ty

\unskip\unskip\unpenalty

3

Now to try these macros out:

610 TUGboat, Volume 11 (1990), No. 4

\ ref \paper T i t l e of t he important

work he wrote

\by Arthur Aja Desc

\key De \endref

\ ref \key K\by Kustirn Kunsla

\paper And t o t e s t l i n e breaking

a f t e r e x p l i c i t hyphens: pneu-mono-ul-%

tra-mi-cro-scop-ic-sil-i-co-%

vol-ca-no-co-ni-o-sis \endref

[De] Arthur Aja Desc, Title of the important work

he wrote.

[K] Kustim Kunsla, And to test line breaking af-

ter explicit hyphens: pneu-mono-u1-tra-mi-cro-

scop-ic-sil-i-co-vol-ca-no-co-ni-o-sis.

Without the use of Knuth's idea there would

be no legal breakpoints after any of the explicit

hyphens in pneu-mono-ul-tra-mi-cro-scop-ic-sil-i-co-

vol-ca-no-co-ni-o-sis and we'd have an overfull line.

Complications

A significant stumbling block was pointed out to

me by Ron Whitney at TUG when I submitted this

article (thank you, Ron): if we're typesetting a piece

of a reference using \vbox instead of \hbox, explicit

line breaks typed by the user will take effect as soon

as a \par is read-that is, when the information

is stored, rather than when it is combined with the

rest of the reference. In addition to the under fu l l

\hbox message that will result (because \hs ize =

\maxdimen), this means that the \vbox will contain

more than one line of text, and unpacking it will

not be so simple after all.

Let's suppose that, as in AMS-m, the user

has a single command for forcing a line break.

called \ l inebreak. We don't need to worry about

"suggested" line breaks - anything with a \penal ty

greater than - 10000 -because these will remain

inactive during the initial typesetting, thanks to

the large \hsize. The problem is to take the text

that is split by a \ l inebreak and save it in such

a form that it can later be joined seamlessly with

the rest of the reference, but with the line break

preserved. And we want to suppress the under fu l l

\hbox message while we're at it.

There are various alternatives, and some read-

ers may be able to devise a better solution than

the one I chose. But first let me mention briefly

a couple of the more tempting and less practical

alternatives that I considered:

(1) Tell the users that they can only use

pure bibliographic information inside the reference

macros, unsullied by uncouth raw typesetting com-

mands like \ l inebreak. This would mean only

that users would grumble about their output and

line breaking problems would be deferred to the

attention of publishers' production troubleshooters,

e.g., me.

(2) Redefine \penal ty to check the penalty

amount and make sure it's -9999 or greater; that

is, convert forced line breaks to "emphatically

suggested" line breaks. This would work reasonably

well in a bibliography context (especially with a

high setting of \ tolerance) , since penalties are

only used for line breaking and page breaking, and

within the scope of the \penal ty redefinition there

wouldn't be any embedded vboxes wherein line-

breaking had to be restored to normal. However,

this alternative seems dangerous; I was able to

imagine at least one scenario (too complicated to

be worth describing here) where changing forced

breaks to nonforced breaks would cause a problem.

One way of handling line breaks. Assume that,

as in AMS-W, the user has a single command,

\ l inebreak , to force a line break, and that its

normal definition is essentially \penalty-10000

(ignoring some frills like error messages if in vertical

mode). We don't have to worry about penalties

greater than -10000, as mentioned earlier. Inside

the \vbox that is being typeset by \makerefbox,

we can change the definition of \ l inebreak:

\def\linebreak{\par

\setboxO=\lastbox

\setbox\holdoverbox=

\hbox~\unhbox\holdoverbox

(in case more than one \ l inebreak occurs within a

single piece of the reference)

\unhboxO

\unskip\unskip\unpenalty

\penalty-10000)%

\noindent)

% Can't fo rge t t h i s

\newbox\holdoverbox

Thus \ l inebreak takes the text so far and saves

it in \holdoverbox, along with a break penalty,

inactive here because we're in an \hbox instead of

a \vbox. This saved part will then be combined

with the remainder of the current reference field, by

way of some extra processing in \makerefbox and

\endref.

TUGboat, Volume 11 (1990). No. 4 611

After \checkholdoverbox, we have reduced the

contents of the current \vbox to a single \hbox,

just as if no \ l inebreak had been present.

There are extra complications if the user inserts

a \ l inebreak at the end of a field, because that

means the break will be taken between the text

and ensuing automatic punctuation if we don't

do something about it. Some nice checking and

rearranging to handle this case was present in

Spivak's original version of the amsppt reference

macros and will not be discussed here.

Text measurement applications

To understand more clearly the second application

mentioned at this article's beginning, consider the

usual method for measuring a piece of text and

using the width as a selector:

\def\caption#lC%

\setboxO=\hboxC#l)%

\ifdim\wdO<\hsize

\centerline{\boxO)% centered l i n e

\ e l s e

\noindent#l \par % paragraph

\f i)

Using \unhboxO in the (paragraph) branch would

be slightly more efficient -it avoids typesetting the

text twice. But that would bring in the line-

breaking problems described above. We can have

our cake and speed up, too, if we use Knuth's idea

and start by setting the caption in a \vbox, rather

than an \hbox.

Handling vertical mode material in a caption.

After setting material in a \vbox, simply extracting

\ l as tbox as in the \unvxh example may not be

enough. What if someone wants two paragraphs

in a caption, or maybe even a displayed equation?

A \par or display in the \vbox will mean that

after extracting \ l as tbox some material will be left

behind. I had a chance to experiment in a recent

assignment, which was to create a MTEX docu-

mentstyle for electronic submissions to American

Mathematical Society journals. One of the macros I

had to modify was \@makecaption. whose original

definition from a r t i c l e . s t y was roughly the same

as the \capt ion example above.

This is what \@makecaption had to be modified

to do: If the total width of the caption material

is greater than \columnwidth (29pc), break the

caption into lines using a line width of 23pc. and

center the resulting block between the margins.

Otherwise set the caption as a single line, centered

between the margins.

To do this I decided to set the caption as a

\vbox with line width 23pc, but allow the last line

(which may be the only line) to be up to 29pc long

by adding a kern of -6pc. The last line is put into

box register 1 using \ las tbox. After extracting the

last line, if there is anything left in the \vbox, that

means the caption was (most likely) more than one

line long and some extra processing is needed.

The first argument of \@makecaption is the

name of the figure or table. e.g., "Figure I",

generated automatically by IPW. The second

argument is the caption text typed by the user.

\long\def\hakecaption#1#2{%

We begin by setting the text in a \vbox.

\setbox\@tempboxa\vbox{%

% hs ize := 29 - 6 = 23 pc

\advance\hsize-6pc\noindent

Ordinarily the \unskip here would be done auto-

matically by \par, but here the \kern gets in the

way so we must do the \unskip explicitly.

{\sc#l)\enspace#2\unskip

\kern-6pc\par

\global\setbox\@ne\lastbox)%

Now box 1 holds either the entire caption, or the

last line of a multiline caption. In either case we

want to remove \parf i l l s k i p , \ r igh tsk ip , and

the \kern of -6pc. Before we get to the \kern we

also have to remove the penalty of 10000 that is

inserted by at the end of every paragraph.

\setbox\@ne\hbox~\unhbox\@ne

\unskip\unskip\unpenalty\unkern)%

If \@tempboxa is not empty at this point it means

the caption was more than one line long. In that

case we reset the caption using the contents of

\@tempboxa and \unhboxing box 1 (because the

contents of box 1 may need to be made into two

lines instead of one, if its length is greater than

23 picas). Otherwise the caption material is made

into a single centered line. Note: A box register

containing an empty box is not the same as a void

TUGboat, Volume 11 (1990), No. 4

box register: a box register that contains \vbox{)

will not return true if tested with the \ifvoid

test. So to decide whether \@tempboxa is empty we

cannot use \if void. Instead we employ the simple

strategy of measuring the width of the box. This

will not be 100% failsafe but the failure cases that

I've been able to imagine are all rather exotic.

\ifdim\wd\Qtempboxa=\z@

\setbox\@ne\hbox to\columnwidth{%

\hss\kern-6pc\box\@ne\hss)%

\else % more than one line
\setbox\@ne\vbox{\unvbox\@tempboxa

\noindent\unhbox\@ne

\advance\hsize-6pc\par3%

\f i

The \kern-6pc in the first branch is to offset the

\moveright that is about to be done next. (If
tortured, I would be forced to admit that it took

me several attempts before I figured out the right

amount for this kern and the proper place to put

it.) Finally, we put the caption on the page.

with a \vskip to separate it from the preceding or

following material.

\ifnum\@tempcnta<64 %if it's a figure

\vskip lpc%

\moveright 3pc\box\@ne

\else % if the float IS NOT a figure
\moveright 3pc\box\@ne

\vskip Ipc%

\f i

1

By testing \Otempcnta we can tell whether the

caption is being used in a figure environment or

not; if so, we assume that the caption is placed

below the artwork and hence put the \vskip above

the caption; otherwise we assume the caption is at

the top of the floating insertion and we put the

\vskip below it.

\@makecaption presents a few extra compli-

cations that have been omitted for the sake of

simplicity; as given here, the caption will not be

quite centered if the figure caption has no text, and

SO on.

o Michael Downes
American Mathematical Society
201 Charles Street
Providence, RI 02904

mjdQMath. AMS . com

Looking Ahead for a (box)

Sonja Maus

m ' s primitive \aft erassignment can be used for

macros which first assign a value to a parameter,

and then perform some actions using that value.

For instance the plain macros \mapif ication

and \hglue (see The T~Xbook, p. 364 and 352),

assign a (number) or (glue) value to a variable and

then use this value. They provide a user-friendly

"syntax mimicry": \magnification looks like an

integer parameter in an assignment, and \hglue

looks like the primitive command \hskip. There is

another advantage to this method over the use of

arguments with #I: At the moment when looks

at the tokens of the value. it already knows what

kind of value it is looking for. This would be very

useful when the value to be read is a (box), because

an explicit \hbox or \vbox may contain \catcode

changes and all tokens should not be read ahead.

There are seven ways to write a (box) (The
T&Xbook, p. 278). The \afterassignment com-

mand behaves differently with the first four and the

last three of these (box)es:

\afterassignment\t \setboxO=\boxl

results in \setboxO=\boxl \t, whereas

\afterassignment\t \setboxO=\hbox{h)

results in \setboxO=\hbox{\t h).

The macro \afterbox gives a substitute which

is equally valid for all (box)es. Its syntax is

where (argument) is an argument for an undelimited

macro parameter (see The r n b o o k , p. 204), i.e. a

single token or several tokens in explicit braces.

\afterbox puts the (argument) aside (without the

braces, if any), assigns the (box) to the register

\box\afbox, and then reads the (argument) again.

The definition must be read when @ is a letter:

\newbox\af box

\def\afterbox#li\def\afb@xargC#l)%

\afterassignment\afb@x

\chardef\nextC.}

\def\afb@x{\futurelet\next\afb@xtest)

\def\afb@xtest

~\ifcase\ifx\next\hbox\tw@\fi

\ifx\next\vbox\tw@\fi

\ifx\next\vtop\tw@\fi

\if x\next\box\@ne\f i

\ifx\next\copy\@ne\fi

\ifx\next\vsplit\@ne\fi

\ifx\next\lastbox\@ne\fi

O\errmessageCNo <box>)%

\or\afterassignment\afb@xarg

