
TJQC in Schools: Just Say No

Konrad Neuwirth
Postfach 646, A-1100 Wien, Austria (Europe)

EARN/Bitnet: a4422daeQawiuni 1 I

Abst rac t

'I&K is a very good tool for typesetting. But does it offer

anything for schools? The author explains in detail why he

thinks that rn should not go into the schools.

Introduction

After some years of fooling around with rn and

using TE,X professionally, the author has started

to think about the broader use of m. Due

to his current affiliation with the Austrian school

system (the author is still a student), his main

focus in this paper will be his thoughts about

using TEX in schools, especially in computer science

didactics. This paper was written with the Austrian

schools in mind and the state of computer science
introduction here. Although Austria is not the

only country undergoing the described problems,

the author is not trying to set up any globally valid

rules.

Current Situation

Before we start to discuss where could come

into schools, we might want to consider what should

be the goals of the basic introductory courses to

computers (and this is all the schools can offer to all

of the students). Currently, two main approaches

are taken.

Approach One: use t h e computer only in a
special subject. Here, we still have to distinguish

-. between the approaches:

1) Teaching the basic ideas behind applications

with didactically meaningful examples or

2) teaching the basic principles of programming.

If the computer is only used in one subject

(which will probably be called something like "com-

puter science"), I find the first approach the more

desirable one. The students should see the com-

puter as a tool rather than as a toy for some

freaks who just sit in their back room and hack up

new programs. Here, I see no space for fitting in

l&X, which I take as a programming language that

pretends to be an application.

The second approach, although widely prac-

ticed, is the best way to scare people. I think

having knowledge about only one programming lan-

guage (which could even be Basic for that matter)

is worse than knowing nothing about computers.

If the first thing a user ever sees are some cryptic

symbols which help with almost no work but only

create more work, it is a very traumatic experience.

It is hard work to convince such a user of the fact

that computers can help with his or her standard

work. What we will be faced with in this case

won't be computer illiteracy but computer hatred.

I should point out that T@ could be used in such

a situation, but I suggest this is not what a teacher

should do.

Approach Two: Integrate t h e computer in to

t h e "classic" subjects. This means that the

language course teacher teaches how to use word

processors, on-line spelling-checkers and thesauruses

(a triple that will revolutionize language courses);

math teachers will teach the use of spreadsheets and

geometry teachers will teach what CAD systems can

do for technical drawing.

This approach is probably the best as it makes

students use computers for their real papers in

the language courses and not for some texts which

are just typed for the sake of learning how to
word-process them in a computer course. This

approach can, but need not, be combined with an

introduction to computing which should start at

least one or two years after the students start using

computers. They first have to think of the computer

as a tool like pen and paper before they can be

confronted with the inner workings of computers or

programming.

in Computer Science Courses

As noted earlier, I think that can only be

presented as a programming language and not as an

application program. So, in my mind, this rules out

a few things already. But can we use it in the other

approaches? The answer is a simple "no". TEX is

Proceedings of W 9 O

Konrad Neuwirth

simply not a very didactic tool. There are better

programming languages to show basic concepts such

as recursion. There is even a language developed

for teaching children: LOGO. It enables the teacher

to use recursion, or all the other major concepts like

functions or procedures, in a very intuitive manner.

In the appendix, you will find two programs which

accomplish exactly the same thing, one in LOGO
and the other one in w . It is needless to say

which is more useful in a classroom situation.

In the TEX world we have a tool which could be

used in that context and which has not yet earned a

lot of respect for it's potential didactic use: Literate

Programming. I know of one university lecture

where the lecture notes are available as WEB files to

the students, but there is no such thing in schools.

And, for me, the important thing behind Literate

Programming is that it allows the reader to watch

the program designer originate ideas and develop

them into working programs (if the programmer

does use WEB accordingly, of course). As unreadable

as Knuth's books might be, his programs in WEB are

a pleasure to read. The didactic value of m: The

Program must not be underestimated. It is one of

the best things given to a reasonably experienced

Pascal programmer. And with Spidery WEB, we

have the tools to use Literate Programming with

other languages, too.

The difficulty in programming rn to do as

you want it to also creates another problem: teacher

education. Although this should definitely not be

one of the prime criterion in selecting educational

tools, it still is a problem. To really program rn is

difficult enough. But to be good enough to further

teach how to program in l'QX is even harder. So

we see that TpX is not really a good tool to teach

computer science.

in "Classic" Subjects

Maybe we can find a way to use as an

application? There are two more places we could

try to let l&X sneak into schools: language courses

and arts courses.

Language courses. Teachers of language courses

teach the students how to represent their ideas on

paper, although their main goal still should be to

teach them how to verbally express ideas. For

this, rn is overkill. Students should be taught

the basic principles of document design, but the

emphasis still should be on the content, not on the

presentation. If we let them use l&X, they would

spend a lot of time on visual presentation and not

on the content. This is because of the perfectionism

provokes. We already can produce very, very

good output with SO we also have to clean up

the minor glitches and re-edit the input file at least

two or three times until the paper looks almost

perfect. This takes a lot of time. A researcher

might do that, because nobody minds if his paper

is finished half an hour later, but in school, half

an hour is a lot of time, especially with the tight

schedules the schools usually have (in Austria, the

units of subjects taught are 50 minutes). So in the

time the student spends w i n g and previewing his

paper, he might instead be polishing up its content.

In schools, word processors which offer some

basic functions to polish up the image of a text

are sufficient, even if the lines are not broken as

perfectly as if done by TEX. Especially for younger

students, it is not so important to have a perfect

representation of what the output will finally look

like on paper, but it is important that the visual

representation can be changed interactively. Even

tools like Microsoft Word or WordPerfect are too

much because their large number of functions are

not really necessary for educational use.

The basic idea behind didactic software should

always be: how can I easily show what is important?

If we use WordPerfect, students spend most of their

time memorizing key combinations. If we use TEX,
they would have to use an editor (which takes

time to learn) and still remember all the cryptic

tokens that 'I'EX uses. A lot of things can be

said about TEX, but not that it is either didactic

or intuitive. Small word processors like Microstar

from the Borland Turbo Pascal Editor Toolbox

are sufficient. (Well, not quite. There are some

things it lacks too.) There are pull-down menus,

so there is no need to remember the control-alt-

cokebottle combinations, and all the functions are

easily accessible.

Art courses. Art education does not consider

typography and typesetting worthy topics of art

education because there are more important things

to learn. In my career as a student, I never

heard how a good-looking document is produced. I

learned how to paint a surreal city; I learned how

to see colors, I learned about the ideas of different

schools of painters. But I did not learn how to

make a document strikingly different, be it due to

its very special font or markup. Apart from that,

the art teachers I know have some knowledge about

calligraphy, which is considered an art-form, but

typography is a trade.

Proceedings of m 9 0

w in Schools: Just Say NO

Other courses. I see no place where TEX could be

used sensibly. For instance; with current math cur-

riculums, I don't know any place where TkX could

be used. Neither can it be used as a tool nor an ex-

ample to illustrate a specific mathematical concept.

It might be shown as an example where different

"classical" subjects can be integrated (mathemat-

ics, computer science and arts). However, this is a

threatening idea to current school systems, because

then they could not keep up with the very strict

separation of the different subjects and would have

to go to a more integrated and overall different

way of teaching. Although this is done in a very

experimental way, in so called project-weeks, this is

not yet an accepted way of teaching in a school.

A place where T@ could come in handy.

Perhaps some teachers could use m to produce

material for students, but I think this option would

be used by a very small minority. No, there is no

place were TEX fits into schools. It is too big, too

powerful.

Conclusion

TJ$ is definitely a good tool for typesetting. I don't

want to stop anybody from using it. I like to use

it myself, in my spare time. But I think that

has nothing to do in schools. Let's keep it in the

academic and commercial world.

in schools: just say no.

Bibliography

BYTE 7#8 (August 1982) An all LOGO issue

Harvey, Brian Computer Science LOGO Style 3 Vol-

umes. Cambridge, Mass.: MIT Press. (typeset

with TEX)
Knuth. Donald E. The W b o o k . Reading, Mass.:

Addison- Wesley, 1984.

Knuth, Donald E. m: The Program. Reading.

Mass.: Addison-Wesley, 1984

Lovis. D, and Tagg, E.D. Computers in Education

Proceedings of the IFIP TC 3 Conference ECCE

Lausanne 88. Amsterdam 1988: Elsevier Science

Publishers

Papert. Seymour Mindstorms: Children, Computers

and Powerful Ideas, Harvester Press

Proceedings of w 9 O

Konrad Neuwirth

Appendix

Programming Examples

Compare the following two listings which compute prime numbers. The second one is taken out of The

m b o o k , the first one was written in LOGO in maybe 5 minutes1.

The only thing t o understand in the LOGO program is the concept of lists: they are like groups in TEX

or if you want, like LISP lists, but with brackets instead of parentheses. And FPUT puts a given element

into a list at the first position. With this, you should be able to read the program.

TO PRIMES :MAX

PRINT PRIMELIST MAKELIST 2 :MAX

END

TO PRIMELIST :LIST

IF EMPTYP :LIST [OUTPUT [I 1
OUTPUT FPUT FIRST :LIST PRIMELIST REMOVEMULTIPLE (FIRST :LIST) :LIST

END

TO REMOVEMULTIPLE :BASE :LIST

IF EMPTYP :LIST [OUTPUT [I]
IF (REMAINDER (FIRST :LIST) :BASE) = 0

[OUTPUT REMOVEMULTIPLE :BASE (BUTFIRST : LIST) I
OUTPUT FPUT FIRST :LIST REMOVEMULTIPLE :BASE BUTFIRST :LIST

END

TO MAKELIST :START :STOP

IF :START > :STOP [OUTPUT [I 1
OUTPUT FPUT :START MAKELIST (:START + I) :STOP
END

Now, to print the primes up to a given number, you just say PRIMES number.

And now, for the same thing in TEX:

\newif\ifprime \newif\ifunknown

\newcount\n \newcount\p \newcount\d \newcount\a

\def\primes#lC2,-3% assume that #I is at least 3

\n=#l \advance\n by-2 % n more to go

\p=5 % odd primes starting with p

\loop\ifnum\n>O \printifprime\advance\p by2 \repeat)

\def\printpC, % we will invoke \printp if p is prime

\ifnum\n=l and-\fi % this precedes the last value

\number\p \advance\n by -1 3
\def\printifprimeC\testprimality \ifprime\printp\fi)

\def \testprimalityCC\d=3 \global\primetrue

\loop\trialdivision \ifunknown\advance\d by2 \repeat))

\def\trialdivision(\a=\p \divide\a by\d

\if num\a>\d \unknowntrue\else\unknownf alse\f i

\mult iply\a by\d

\ifnum\a=\p \global\primefalse\unknownfalse\fi)

Called by \primes number. Talk about legible programs!

Thanks to Erich Weuwirth for the program, he cooked it up in that amount of time.

174 Proceedings of m9O

