
Just Give Me a Lollipop (It makes my heart go giddy-up)

Victor Eijkhout
Department of Computer Science
University of Tennessee at Knoxville
Knoxville TN 37996-1301
Internet: eijkhout@cs.utk.edu

Abstract

The Lollipop format is a meta-format: it does not define user macros, but it
contains the tools with which a style designer can easily implement such user
macros. This article will show some of the capabilities of Lollipop and will give
the reader a small peek behind the scenes of the implementation.

TEX is intended to support higher-level lan-
guages for composition

Donald Knuth

Introduction

One of the reasons that TEX is not widely accepted
outside the scientific world is that the effort needed
to create new visual designs, or even to make mini-
mal modifications of a given design (“this article is a
bit too long, but since we have rather generous mar-
gins, why don’t we put the title in the margin next to
the abstract, instead of over it”) is disproportionally
large. In Eijkhout and Lenstra (1991) it was argued
that one way of solving this problem would be to
implement powerful tools that a style designer could
use to programmacros without ever programming in
TEX itself. In effect, the style designer “needs only
say what she wishes done” (Perlis) and the meta-
format creates the macros that do this. This article
describes such a meta-format: Lollipop.1

Now, for those who wondered at the title of this
article, the first half refers to an epigram by Alan
Perlis, to be found on page 365 of The TEXbook;
the second half derives from a sixties ditty by Mil-
lie Small. All other etymologies are erroneous, and
severely frowned upon.

The Structure of Lollipop

The Lollipop format tries to provide tools that make
programming macros as hard as using them. I will
not discuss the use of the resulting macros in detail,
but will focus on implementational matters.

Working with Lollipop. In order to process a
document in Lollipop there has to be a ‘style defini-
tion’ for that document. This definition, a sequence

1 The Lollipop format is available for anonymous
ftp from cs.utk.edu.

of Lollipop macro calls, can be in the document it-
self, it can be \input, or it can be contained in a for-
mat. The latter option of loading a style definition
in Lollipop and dumping the result as a new format
is encouraged for two reasons. First of all, it indi-
cates better the separation between the work of the
style designer and that of the user. Secondly—espe-
cially on old computers (say of the order of a 286)—
processing the style definition for a complicated doc-
ument can easily take one or two minutes.

The basic Lollipop macros. The Lollipop format
is partly a macro collection—and some of the more
interesting utilities will be discussed below—and
partly a tool box for defining macros. The tools
are four macros for defining

• headings (\DefineHeading): the main charac-
teristics of a heading are that it has a title, and
that it should stay attached to the following
text;

• lists (\DefineList): a list is characterized by
the fact that it has items;

• text blocks (\DefineTextBlock): a text block
is basically just a group, however, it is so gen-
eral that lists and headings are really special
cases of text blocks; and

• page grids (\DefinePageGrid): a page grid is
(a macro that installs) an output routine.

Each of these macros2 can have a large number of
options.

2 There is in fact a fifth macro \Define-
ExternalItem, closely related to \DefineList; it
will be treated below.

TUGboat, 13, Number 3—Proceedings of the 1992 Annual Meeting 341

Victor Eijkhout

An example of the use of Lollipop. Although
a large number of examples would be necessary to
give a representative sample of the possibilities of
the Lollipop tools, here is one example to give the
reader the basic idea. The following macro defines
a heading \SubSection.
\DefineHeading:SubSection counter:i

whitebefore:18pt whiteafter:15pt
Pointsize:14 Style:bold
block:start SectionCounter literal:,

SubSectionCounter literal:.
fillupto:levelindent title

external:Contents title external:stop
Stop

(The terms ‘block’, ‘external’, et cetera, are called
‘options’.) This definition specifies that subsections
have a counter that counts in lowercase roman nu-
merals, that there should be a certain amount of
white space above and below it, and that it should
be formatted in 14 point bold as the section counter,
a comma, the subsection counter, a full stop, filling
these counters up to the \levelindent width (to
be explained below), and following this by the ti-
tle. Also it specifies that the title should go to the
contents file.

This macro \DefineHeading must be a pretty
complicated object, don’t you think? Well, here is
the full definition:3

\@GenericConstruct{Heading}
\def\@DefineHeading{

\@DefineStopCommand{\relax}
\csarg\edef{\@name}{\@GEN@OPEN

\the\@main@options@list
\@GEN@CLOSE}

}

where the auxiliary macro \csarg is defined as
\def\csarg#1#2{\expandafter#1%

\csname#2\endcsname}

Definition of the \Define macros. Since the
\Define... macros are so much alike—many
options are common to all of them I let
all of them be defined automatically by the
same macro \@GenericConstruct. This defines
\DefineHeading as a macro that will process a list
of options (this part contains the common work for
all constructs), and then call \@DefineHeading to
do the actual definition.

3 Several pieces of code in this article have been
simplified. Others however, such as the following,
have been left intact to convey to the reader the
idea that Lollipop is a sophisticated format.

A call \DefineHeading:Section will expand
first of all to a call
\def\@name{Section}

As can be seen in the example above, this macro is
then used to define \Section with an \edef. This
\edef unpacks the token list \@main@option@list
that has been constructed during option processing.
Also, the macros \@GEN@OPEN and \@GEN@CLOSE con-
tain lots of conditionals that may or may not cause
code to be included in the definition of \Section de-
pending on values of parameters that were set during
option processing. This is explained further below.

Options.Clearly, a large responsibility rests on
processing the options. For instance, in the ex-
ample above the option ‘counter’ has to allo-
cate the appropriate counter, but also set the test
\has@countertrue.

Options can be general, such as the ‘counter’
option (here \xp is \expandafter):
\@GenericOption{counter}{\has@counteryes

\NewCounter:\@name
\xp\add@mark@item\xp{\@name Counter}
\CounterRepresentation:\@name=#1
}

or they can be specific, such as the option controlling
white space between items in a list:
\@ListOption{whitebetween}{....}

Generic options are defined as follows:
\def\@GenericOption#1{

\append@to@list
{@GenericOptions}{\\#1;}

\csarg\def{Option@#1}##1##2}

for instance, for ‘counter’ a macro \Option-
@counter is defined. The definition
\@GenericConstruct{List}

causes the definition of \@ListOption:
\def\@GenericConstruct#1{

\csarg\def{@#1Option}##1%
{\csarg\def{#1@##1}####1####2}

so that the ‘whitebetween’ option causes the defi-
nition of a macro \@List@whitebetween.

Now let’s say we are defining a heading, and
we find the option ‘foo’. We then check whether a
macro \Heading@foo is defined. If so, we execute it;
if not we check for the existence of a more general
macro \Option@foo. This is executed if it exists,
and if it doesn’t, we check whether \foo is a defined
control sequence. If it is, we include the command
\foo in the \@main@options@list, so that it will
later be part of the definition of the heading we are
defining; if it is not, we generate an error message.

342 TUGboat, 13, Number 3—Proceedings of the 1992 Annual Meeting

Just Give Me a Lollipop (It makes my heart go giddy-up)

The Basic Tools

In this section I will give a short overview of the
capabilities of the four basic macros. First the block
structure macros used in all of them are explained
briefly.

Block structure. Text blocks and lists are obvious
candidates for environment macros that do group-
ing, so that values of \leftskip, \parindent, and
whatever more can stay local. As I’ve argued in (Ei-
jkhout, 1990) such macros can also handle spacing
above and below the environment. Thus, Lollipop
has two macros
\def\@GEN@OPEN{\outer@start@commands

\begingroup \inner@start@commands}
\def\@GEN@CLOSE{\inner@end@commands

\endgroup \outer@end@commands}

that induce grouping, and that perform the various
actions needed at the boundaries of an environment.
This also includes such common actions as handling
counters and titles, placing marks, and defining la-
bels for symbolic referencing.

For instance, if the macro currently being de-
fined (if this is \Section, the macro \@name has that
value) has a counter, that should be incremented.
Therefore the macro \@GEN@OPEN contains a line
\ifhas@counter

\noexpand\StepCounter:\@name
\fi

Recall that these macros are called inside an \edef,
so \Section macro contains the line
\StepCounter:Section

only if the macro has indeed a counter.
In general, a macro \foo opening the en-

vironment will contain the code generated by
\@gen@open, while a corresponding command
\foostop contains the \@gen@close code.

Headings: Maybe somewhat surprisingly, a head-
ing can be considered as an environment,
namely as one where the heading command con-
tains both the opening and closing commands
of the environment. Titles are treated below.

Text blocks: Text blocks are environments that
can span several paragraphs. They have ex-
plicit open and close commands. Text blocks
are, for instance, a way of having a chunk of
text be indented and perhaps labeled. As an
example, here is the specification of the exam-
ples in TEX by Topic (Eijkhout, 1992): they are
indented, and the word ‘Example’ is set in italic
over them.

\DefineTextBlock:example
breakbefore:500 breakafter:1
PushListLevel
noindent begingroup Style:italic

literal:Example endgroup
par nobreak Indent:no
text
Stop

The option ‘text’ indicates where the text of
the block fits in the specification. Any options
appearing after this option will result in code
in the macro that closes the environment. For
instance, here is a possible way of defining left-
aligning display equations:

\DefineTextBlock:DisplayEq
whitebefore:abovedisplayskip
whiteafter:belowdisplayskip
whiteleft:levelindent
literal:$ displaystyle text
literal:$
Stop

The closing macro will be defined as

\def\DisplayEqstop{ ...
$
\endgroup ... }

where the dollar corresponds to the one after
the ‘text’ option.

Lists: The main point of interest about lists is the
formatting of the item labels. The two main
choices are

item:left ... item:stop

for left-aligning, and

item:right ... item:stop

for right-aligning labels. The label can for
instance contain an ‘itemCounter’, or an
‘itemSign’, or even both. The item sign and
the representation of the item counter are de-
pendent on the level, and can be set by the
designer.

An interesting option is ‘description’. If this
option is used, all text following \item to the
end of line will be taken as the label text. The
LATEX style description list can be implemented
as

TUGboat, 13, Number 3—Proceedings of the 1992 Annual Meeting 343

Victor Eijkhout

item:left Style:bold
description Spaces:2
item:stop

which is used as

\item The label
and the next line is again normal

Abbreviated closing: Both lists and text blocks
have an explicit closing command. Since such
phenomena are properly nested, the format can
very well figure out what to close if I tell it to
close the current block. Therefore, the macro
\> closes whatever list or text block is opened
last, and \>] closes all lists and text blocks that
are currently open.

Page grids: Definition of output routines is much
easier in Lollipop than in plain TEX, but still
it is the hardest part of working with Lollipop.
Hence I will not go into full detail.

The most important option for page grids is
‘text’. It indicates that a page will use part
of \box255. If this option does not appear, we
are defining an output routine that does not use
\box255. For such output routines the option
\nextpagegrid is crucial: it tells TEX what
output routine to take when the current one
has output a page.

For instance, if left and right hand pages have
a different layout, we could implement them as
separate output routines:

\DefinePageGrid:leftpage
nextpagegrid:rightpage
...

\DefinePageGrid:rightpage
nextpagegrid:leftpage
...

The ‘text’ option usually appears inside

band:start text band:end

and it can occur several times there. For in-
stance

band:start text
white:20pt text
band:stop

defines a two column layout with a gutter width
of 20 point.

Some of the options for page grid (height and
width for instance) have a global significance,
but for others it is recorded whether they ap-
pear before or after the ‘text’ options. Depend-
ing on this, they become part of the header or
the footer of the page.

When the output routine is invoked, Lollipop
assembles any header or footer, and computes
the remaining space for text. If this is not equal
to the size of \box255, \vsize is reset, and
\box255 is thrown back to the main vertical
list. This mechanism is an easy way to get pages
with the same size if the size of the header or
footer can vary.

Definition of output routines is in fact so easy
in Lollipop that for title pages of chapters it is
easier to write a special page grid, than to mess
around with a lot of macros. Thus the line

\Chapter The second chapter\par

may look to the user as calling a macro, whereas
in fact it installs a new output routine for the
chapter title page. The way the title is handled
is explained below.

Titles and References

The perceptive reader may have noticed in the defi-
nition of \DefineHeading above that the macro de-
fined is not declared with a parameter. How then
are titles handled?

Well, since in Lollipop not only headings, but
also lists, text blocks, and page grids can have ti-
tles (but need not; every once in a while a head-
ing without a title can be convenient, and output
routines with titles are surprisingly useful, as I in-
dicated above), the option ‘title’ controls whether
a construct actually has a title by setting a switch
\ifhas@title to true. Definition of the actual
heading macro then executes a line
\ifhas@title \@Titelize{\@name}\fi

where \@Titelize is a macro that takes a macro,
and redefines it with an argument.

This redefinition trick can even be performed
twice: if the macro has a counter, this should be ref-
erenceable. For some reason I decided against the
LATEX approach of using \label commands: any

344 TUGboat, 13, Number 3—Proceedings of the 1992 Annual Meeting

Just Give Me a Lollipop (It makes my heart go giddy-up)

command that can be referenced in Lollipop4 ac-
cepts an optional parameter with the label key. For
instance
\Section[definition:section] Notations

and Definitions\par

gives the key ‘definition:section’ to a section.

Indentation Levels

If lists of various types are used in a nested fash-
ion, each next level is indented with respect to the
previous one by a certain amount. Specifying these
amounts can be done quite flexibly in Lollipop, and
it is also made easy for the designer to have other in-
dented material line up with these implied left mar-
gins (Braahms, Eijkhout and Poppelier, 1989).

On each level, a control sequence \levelindent
indicates the amount by which the next level will be
indented. Thus, letting \parindent be set equal to
\levelindent at the start of a text block, will give
nicely aligning indentations no matter at what level
the block appears.

The value of \levelindent is determined by
looking at the level number (say that this is 3), and
checking whether a macro \levelindentiii exists.
If so, the value of this is taken, if not, some default
fraction of the value of \basicindent is taken. The
style designer can set this \basicindent, and adjust
individual levels by
\LevelIndent:3=25pt

or similar calls.
Lists are indented to the next level automati-

cally, but in order to provide this functionality for
other objects there exists an explicit
\PushListLevel

command. There is even a \PopListLevel com-
mand that has various uses. For instance, it can be
used to realise ‘suspended lists’: the effect of
\item Some text\par
{\PopListLevel
\noindent Some text.\par}
\item Again an item

is that the ‘some text’ aligns with the text outside
the list, instead of with the items in the list.

Popping and pushing list levels is also essential
for correct formatting of external files; see below.

4 Not explained in this article is that the way
something is referenced is also easily determined by
the user. This makes it possible for instance to refer
to chapters by name instead of by number.

Marks

TEX’s marks are a means of communication between
routines that supply certain information (values of
counters, titles), and the output routine. Since there
is no way for the output routine to tell the rest of the
macros which ones should pass information through
marks, in Lollipop everyone puts their information
(that is, titles and counter values) in marks. The
output routine then selects with a simple call, for
instance
\LastPlaced:SectionTitle

the value of \SectionTitle in the \botmark.
Let’s look at the implementation of this. There

is a list \mark@items that has the names of every-
thing that goes in a mark. For instance, defining a
heading \Section causes calls
\add@mark@item{SectionTitle}
\add@mark@item{SectionCounter}

These allocate token lists
\mark@toks@SectionTitle
\mark@toks@SectionCounter

which are to contain the title and the counter value,
and which get their value from a command such as
\refresh@mark@item

{SectionTitle}{The title}

whenever \Section is called. Everytime a mark
item is refreshed, a new mark is placed on the
page which contains the values of all mark token
lists. The output routine then simply picks from
this structure whatever information it needs.

External Files

Formats such as LATEX usually supply facilities for
a table of contents, and maybe lists of figures and
tables, but what if an author needs in addition a list
of notations, one of definitions, and one of authors
referenced? Lollipop takes the drastic approach, and
provides none of these.

But it makes it easy for you to define them your-
self.

User interface. An external file is characterized by
in an internal name, and a file name extension:
\DefineExternalFile:Contents=toc

This command does some initialization such as a
call to \newwrite, and it creates a switch so that
the user can specify with
\WriteContents:no

that the file is not to be overwritten in this run. A
global switch
\WriteExtern:no

TUGboat, 13, Number 3—Proceedings of the 1992 Annual Meeting 345

Victor Eijkhout

prohibits all external writes.
Next, commands such as \Section have to

specify that they want to write out information.
This is done with the option ‘external’. Usually,
all that is written out is the title

external:contents title external:stop

but other information can be written out too.
The hard part about external files is specifying

how their information is to be typeset. Telling that
a file needs to be loaded is simple:
\LoadExternalFile:Contents

For every command that writes information to an
external file, the style definition needs to contain a
call
\DefineExternalItem:Section file:Contents

item:left Style:roman SectionLabel
item:stop

title Spaces:2 Style:italic Page
Stop

where ‘SectionLabel’ is the counter that was writ-
ten out automatically for \Section, and ‘title’
is whatever information was specified with the
‘external’ option.

In effect, this defines the layout of a list that
has only one item. Now we see another use for push-
ing indentation levels: contents items for subsections
may need to be indented, but since they are a sep-
arate list on the outer level, we need to push them
explicitly to the correct indentation:
\DefineExternalItem:SubSection

file:Contents
PushIndentLevel Style:roman
item:right SectionLabel literal:.

SubSectionLabel Spaces:1 item:stop
title Spaces:2 Style:italic Page
Stop

Note that a composite label is made here out of the
section and subsection numbers.

Implementation.External files are handled in
much the same way they are treated in LATEX: all
information is written to the main auxiliary file, and
this is loaded at the end of the run, in order to up-
date the other external files.

Writing out titles and such means that these
are subject to the usual expansion of \write. The
LATEX approach of letting the user put \protect
commands has proved over time to be too error-
prone, so I’ve decided to inhibit all expansion in
titles.

Extendability of Lollipop

For each macro package, the question comes up ‘but
what if I want something that it cannot do?’ The op-
tion mechanism of Lolipop can cope with this quite
easily. Any option that is undefined is interpreted
as a control sequence. Thus the style designer can
incorporate arbitrary macros.

For instance, the title pages of TEX by
Topic (Eijkhout, 1992) have quite elaborate head-
ings, for which I programmed a separate macro
\ChapterHead, which uses the (automatically gen-
erated) macro \ChapterTitle.
\def\ChapterHead

{\hbox{ ...
\PointSize:24 \Style:roman
\ChapterTitle

...}

The macro \Chapter then uses this \ChapterHead:
\DefinePageGrid:Chapter

NextPageGrid:textpage HasTitle:yes
...
ChapterHead
... Stop

The undefined option ‘ChapterHead’ generates a call
to the macro \ChapterHead.

Goodies

It goes without saying that Lollipop has a sophisti-
cated font selection scheme, a verbatim mode, and
other assorted niceties. However, since these facili-
ties are rather pedestrian, if rather useful, I will not
discuss them here.

Conclusion

Lollipop is a long, complicated format. An arti-
cle about it can only give a taste of its philosophy.
I hope this piece has given the reader an idea of how
macros can be generated automatically, according
to the wishes of a style designer. People wanting to
use Lollipop can get the software and a user’s guide;
people wanting to understand it will, for a while,
have only this article and the code to go on.

As yet there is no real experience with Lollipop.
I have used it myself for two books, but I am the au-
thor. I find it very easy to use, but if something goes
wrong the errors can be mystifying in the extreme.5

Error messages are still a major concern. Recall that
macros are automatically defined and redefined, by

5 And the macros themselves can become pretty
big. While debugging, I discovered that TEX will
‘only’ \show the first 1000 characters of a macro. . .

346 TUGboat, 13, Number 3—Proceedings of the 1992 Annual Meeting

Just Give Me a Lollipop (It makes my heart go giddy-up)

macros that are themselves never explicitly defined.
Still, I hope that the dynamic approach will catch
enough user mistakes already in the definition stage
for this format to be of value to non-TEXnicians
wishing to use TEX.

Bibliography

Braams, Johannes, Victor Eijkhout, and Nico Pop-
pelier, “The development of national LATEX
styles”, TUGboat, 10(3), pages 401 – 406, 1989.

Eijkhout, Victor, “A paragraph skip scheme”, TUG-
boat, 11(4), pages 616 – 619, 1990.

Eijkhout, Victor, TEX by Topic, Addison-Wesley,
1992.

Eijkhout, Victor and Andries Lenstra. “The docu-
ment style designer as a separate entity”, TUG-
boat, 12(1), pages 31 – 34, 1991.

Perlis, Alan, “Epigrams on Programming”, ACM
Sigplan Notices, 17 (9), pages 7 – 13, 1982.

TUGboat, 13, Number 3—Proceedings of the 1992 Annual Meeting 347

