
MetaFog: Converting METAFONT Shapes to Contours

Richard J. Kinch
6994 Pebble Beach Court

Lake Worth FL 33467 USA

Email: kinch@holonet.net

URL: hhtp://www.emi.net/~kinch

Abstract

The Computer Modern Typefaces have their original specification in terms of
the METAFONT language. The individual glyph programs rely on the sophisti-
cated algebra and marking methods of METAFONT. Many of the METAFONT
primitives, such as stroked pens and overlapping ink, are not directly expressable
in outline typeface formats such as Type 1 and TrueType, which support only
topographic contours expressed as non-overlapping Bézier curves.
We explain the computational geometry involved in the conversion from

METAFONT shapes to outlines, why this is a difficult problem, and why pre-
vious efforts have fallen short. We describe MetaFog, a set of programs writ-
ten to post-process METAPOST output to complete such conversions, and the
algorithms implemented to solve the mathematical problems. The two most sig-
nificant problems are (1) finding the envelope of an elliptical pen stroked along
a Bézier curve (an algebraic problem), and (2) reducing overlapping paths to
an equivalent, non-overlapping contour (a topological problem). We propose a
scheme to embed Type 1 and TrueType hint technology into METAFONT sources
to reduce the duplication of effort to produce well-hinted fonts. We compare
the accuracy of MetaFog’s analytic conversions to approximations based on auto-
tracing of METAFONT’s bit-mapped output, and show examples of errors in the
Computer Modern Typefaces which are hidden in METAFONT proofs but visible
in MetaFog proofs.

TEX and its Fonts

Modern implementations of TEX like TrueTEX
r©

have eliminated bit-mapped meta-fonts in favor of
outline formats such as TrueType or Type 1. TEX
did an admirable job of producing its own font
bit-maps in the days before operating systems sup-
ported fonts. But today the most popular operating
systems and print engines require outline fonts.
These scalable formats facilitate previewing and
printing TEX documents in a powerful, portable,
and flexible fashion which bit-mapped fonts cannot
achieve.
While pure TEX is independent of any particu-

lar fonts, TEX is nevertheless just as dependent to-
day on Computer Modern and other METAFONT-
based fonts as ever. Thus arises the need for conver-
sion of METAFONT programs into equivalent outline
forms.
While METAFONT programs can describe a

glyph in terms of complex, overlapping paths, the
outline formats require that we specify glyphs as a

set of contours (non-overlapping outlines). Herein
lies the most difficult aspect of conversion: META-
FONT’s primitive shapes are built from third-degree
parametric curves modulated by third-degree paths,
and such shapes can overlap, add and subtract in
arbitrarily devious ways.

Conversions: analytic versus approximate.

MetaFog is a system for exact, analytic conver-
sion of METAFONT shapes to contours. That is,
MetaFog always store shapes in terms of their pure,
parametric curves. By “analytic” we mean that the
methods we use analyze and solve the underlying
equations for the parametric curves. We use no
intermediate approximations such as converting
curves to polygons, so that every result curve is a
direct derivation of an input curve and every input
point is unchanged in the output.
By “exact” we mean that the result curves fol-

low the METAFONT shapes to within one pixel in
the 1024 or 2048 pixels/em grid used in typical out-
line font formats. In some cases METAFONT design

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 233



Richard J. Kinch

envelopes cannot be represented exactly by Bézier
curves, and we use this metric to determine the de-
gree of curve-fitting needed. We use a METAFONT
mode_def for a “perfect” output device needing no
corrections for fill-in or overshoot.
Automating an analytic conversion of META-

FONT shapes requires a major effort in both math-
ematics and software. It requires solutions to prob-
lems which Knuth managed to avoid in METAFONT
by using numerical tricks and simplifications. Ear-
lier projects have attempted the task, but either fall
short of or approximate the full solution (Yanai and
Berry, 1990; Carr, 1987; Henderson, 1989).
Outline conversions of meta-fonts have also

been done before using approximation techniques,
thus avoiding the difficulty of an exact, analytic
conversion. For example, autotracing attempts to
fit an outline to a high-resolution bit-map. With
enough skilled labor, autotracing yields an aes-
thetically pleasing result, although the shapes will
tend to have certain artifactual deviations from
the precise METAFONT originals. The BlueSky-
Y&Y conversions of Computer Modern and other
meta-fonts show that careful autotracing and hand-
tuning can produce a result equal to that of a
conventionally-designed commercial font.
More recently Malyshev (1994) has published

the BaKoMa fonts, which contain very precise out-
line conversions of Computer Modern. Malyshev’s
publication is limited to the results (that is, the out-
line fonts themselves); he has not revealed the de-
tails of his technique, although he claims that it is
analytic and not an autotraced or otherwise a digi-
tized approximation. We will show below examples
of font details which an analytic conversion would
preserve, but which are missing from the BaKoMa
fonts. Malyshev’s claim of analytic perfection could
nevertheless be true, if such errors were introduced,
for example, by bugs in his conversion software. On
the other hand, if a hidden approximation is in-
volved somewhere in the BaKoMa conversion pro-
cess, the result would not meet our strict definition
of being both “exact” and “analytic”. This is not
to say that the BaKoMa fonts are poor conversions;
it is evident that the shapes are excellent in every
way important to font designers and that they are
generally faithful to the METAFONT originals.

The Nature of the Conversion

Let us consider the nature of the conversions in-
volved. METAFONT can actually do more sophis-
ticated things than we are about to describe, but
we will restrict our consideration to those META-

FONT features that are actually used in typefaces
like Computer Modern.

Bézier curves. We will consider Bézier (Glassner,
1990) contours to be our target format. A Bézier
curve (Figure 1) is a parametric curve governed by
the equation:

z(t) = (1− t)3z1 + 3(1− t)2tz2 + 3(1− t)t2z3 + t3z4
Parameter t is called the time along the curve and
ranges over the interval [0, 1]; the point at time t is
z(t). A Bézier path is a set of Bézier curves which
connect in a chain at their endpoints to form a more
complex curve. A closed path which does not over-
lap describes a complete circuit and encloses an area.
A set of such paths make a Bézier contour, which
can describe the outlines of a glyph. The paths in
the contour of a well-formed glyph do not intersect
each other, and as well they do not intersect them-
selves. This is the representation used in the Type 1
font format (Adobe Systems, 1990). Conversion of
Type 1 glyphs to TrueType glyphs (which use lower-
order parametric curves) is a straightforward con-
version. In METAFONT (as documented in the lit-
erate source code), Knuth calls the Bézier paths cu-
bic splines (an equivalent mathematical term), and
uses a data structure consisting of knot locations
and control points to specify paths. This is the ter-
minology we use in MetaFog. In Figure 1, points z1
and z4 are knots, and z2 and z3 are control points.
The goal of MetaFog conversion is to pro-

duce Bézier outlines which accurately represent
the METAFONT designs. This will be close to
the minimal set of knots needed to fit the design,
because both METAFONT and Computer Modern
are economical in their use of reference points,
and the reference points in a METAFONT program
generally expand into the minimal set of knots
to implement a fitted curve. Because METAFONT
divides curves into octants, METAFONT’s curves
tend to have control points every 45 degrees or so,
versus Type 1 fonts which often subtend curves
of 90 or 180 degrees per control point. So in this
sense METAFONT designs have more control points
than good Type 1 designs. On the other hand,
the Type 1 format mandates rules for tangents and
extrema points that tend to add redundant control
points to designs, so in this sense METAFONT de-
signs have fewer control points than good Type 1
designs. MetaFog preserves the pure METAFONT
design, such as the addition of 45 degree control
points and the absence of redundant extrema points
versus a likely implementation in Type 1. The
final conversion code will optionally add redundant
points to meet the Type 1 mandates.

234 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting



MetaFog: Converting METAFONT Shapes to Contours

z1= z(0)

z4= z(1)
z(t)

z2

z3

Figure 1: Bézier curve, starting at z1 and ending
at z4. The outgoing control point is z2, incoming
is z3.

Before METAFONT digitizes a glyph into a
bit map, it represents the glyph as a collection of
shapes. Each shape can be an outline determined
by a set of Bézier curves or the envelope of an
ellipse stroked along a path. Each shape also can
add or subtract ink. This is the internal represen-
tation which we wish to reduce to an equivalent
set of Bézier outlines, which are the shapes which
a Type 1 font uses directly or which can be easily
converted into the shapes for a TrueType font.

METAFONT shapes also have color; in practice
this means that we can think of each shape as ei-
ther additive black ink or “white” ink that subtracts
black ink already drawn. We can see that the order
of drawing shapes in a glyph must therefore be pre-
served.
Within MetaFog we use the winding-number

convention (like PostScript’s) for controlling color
(black versus white), while METAFONT stores an
explicit color for each shape. METAFONT shapes
usually, but not always, follow a consistent winding
direction for the associated color. MetaFog is careful
to check shapes on input so that the winding number
and color are consistent. When MetaFog discovers
an inconsistency, it reverses the input path.
The different models treat edges differently

when rendering bit maps. We have yet to take this
into account in our conversions.

Bézier tools. MetaFog uses quite a few alge-
braic tools to manipulate curves. Some are re-
implemented or generalized algorithms from META-
FONT, and some are entirely new concepts:

• Find the coordinates of a given time value on a
curve.

• Find closest time on a curve to a given point.

• Audit a curve, path, or contour data structure
for consistency.

• Test whether a path is degenerate (zero winding
number).

• Test whether a path is redundant (contained
within) with respect to another.

• Test whether a path (possibly pivoted) dupli-
cates another.

• Test whether two paths overlap (that is, have a
common segment).

• Find all intersections between two curves, asso-
ciating mutual intersecting locations.

• Find all intersections in a contour, associating
them with each appropriate curve in terms of
time.

• Sort intersection times associated with curves
in a contour.

• N-sect a curve into N curves given a set of times.
• Given an ellipse, generate a four-curve approx-
imation.

• Given an ellipse, find the point on the ellipse at
a given angle from the major axis.

• Given an ellipse and an angle of rotation, find
the maximum point (horizontal tangent) on the
ellipse.

• Test if two line segments cross.
• Given the parallel curves of a stroked path,
stretch or shrink the endpoints to fit a given
ellipse with arbitrary rotation.

• Given a curve and a rotated ellipse, return the
6 to 8 curves fitting the envelope.

• Given the positions and tangents of a curve end-
points, and a midpoint position, locate the end-
points which fit the constraints.

• Test a curve for “simpleness” (that is, turning
angle ≤ π

2
and no inflections).

• Given an open path and an ellipse, return the
envelope, reducing overlapping segments.

• Test whether a given point is on a curve (with
given tolerance).

• Test whether a given point is inside a closed
path.

• Test whether a given path is interior to another
path.

• Find all circuits in a contour.
The above algorithms, plus syntactical and

data-structure chores, make up about 12,000 lines
of C program code.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 235



Richard J. Kinch

Loading Shape Information from METAPOST.

METAPOST (Hobby, 1989) relieves us of the diffi-
cult task of running METAFONT and extracting the
Bézier curve information relevant to a character. We
chose to have MetaFog interpret the PostScript out-
put from METAPOST and to construct the MetaFog
contour data structures during this interpretation,
rather than trying to modify METAPOST to make
output in a more convenient form. This allows us to
stay current with METAPOST improvements.

METAPOST outputs outline curves in Post-
Script by first defining the path with newpath,
moveto, curveto, lineto and closepath com-
mands, followed by a zero-pen-width stroke and
a fill. For “white” ink METAPOST uses setgray
before stroking or filling. For elliptical pens and
slanted coordinate output transformations META-
POST uses dtransform’s to apply affine transfor-
mations. MetaFog contains an input interpreter
that converts METAPOST output to internal data
structures.

Rendering ellipses stroking paths. One of the
problems which Knuth sidestepped in METAFONT
was computing the envelope of an ellipse stroking
along a Bézier curve. Knuth here chose to use
Hobby’s method to compute the envelope in terms
of the raster instead of scalable curves; the com-
putational geometry then reduces to a matter of
manipulating line-segments and polygons instead of
polynomial curves (The METAFONTbook, §524).
We instead want to compute a Bézier curve out-

line for stroked-ellipse envelope. Algebra tells us
that stroking a 3rd degree polynomial curve (the el-
lipse approximated by Bézier curves) along a 3rd
degree polynomial curve (the Bézier curve of the
stroked path) results in a 6th degree envelope curve.
We will have to approximate these 6th degree exact
envelope curves with 3rd degree (Bézier) curves.
Figure 2 shows how an ellipse contour may

be approximated by a contour made from Bézier
curves. This is similar to the four-curve approx-
imation to a circle cited by Knuth. The Bézier
control points for a unit circle are located symmet-
rically 4

3
(
√
2− 1) ≈ 0.552 units away from the end

points. (This quantity does not appear explicitly in
METAFONT, but we can solve for it by substituting
the known angles and locations at the ends and
midpoints of the curves.) The affine properties
of Bézier curves permit us to linearly distort the
Bézier control points of the unit circle in proportion
to the eccentricity of a unit ellipse to fit a Bézier
contour to that ellipse. We can also apply linear

transformations of rotation, scaling, and translation
to tilt, size, and place a unit ellipse as desired.

Figure 2: Contour of four Bézier curves which
approximate an ellipse.

To proceed to the envelope problem, let us as-
sume that the situation looks like Figure 3, where
(without loss of generality) we have rotated and
translated the coordinates such that the start of the
stroking path is at the origin and has zero slope
there.

Untransformed

Ellipse

Transformed

Ellipse

Ellipse at

Midpoint

Ellipse at

Endpoint

Figure 3: Stroking an Elliptical Pen on a Bézier
Path.

We will fit an envelope consisting of two ends
and two sides. The sides are “parallel” to the

236 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting



MetaFog: Converting METAFONT Shapes to Contours

stroking path, and the ends are subsets of the el-
lipse at the start and finish of the stroke. We use
a set of boundary conditions for the approximation
which will be natural and visually appealing: The
slopes of the side curves start at zero and end with
the same angle at which the stroke curve ends.
We fix the midpoints and angles of the side curves
based on the location of the ellipse at the midpoint
of the stroke, using the tangent points of the ellipse
matching the angle of the stroke at its midpoint.
This approximation is quite good when curves are
not too “sharp”; that is, they do not turn through
more than 90 degrees, and are not too “tight”; that
is, they do not have a high 2nd spatial derivative.
We can always bisect sharp and/or tight curves
to improve the accuracy of the approximation as
needed; in practice the curves are almost always so
gentle as to be well-fitted without bisection.
To compute the envelope curves, we must find

their endpoints and their control point locations.
We first translate and rotate the coordinates of the
problem to the normalized coordinate system to
fit the model. Using the boundary conditions—
namely the endpoint locations, endpoint tangent
angles, and the midpoint locations—a bit of poly-
nomial algebra and a solution of simultaneous
equations yields a closed-form solution to where to
put the endpoints and control points of the envelope
curves. Given these two curves, we can compute
the subset of the ellipse curves as a maximization
problem in another transformed coordinate system.
Inverting the rotation and translation of coordinates
yields the desired solution.
Figure 4 shows some examples of envelopes

computed with this method. Careful attention
to generality and numerical domains yields a ro-
bust algorithm, which is crucial to the wild data
characteristic of graphical shapes.

METAFONT usually uses circles (of course, a cir-
cle is a special case of an ellipse) to stroke pens. The
exceptions whereMETAFONT uses elliptical pens are
the calligraphic capitals and a few math symbols.
Knuth also used circular pens quite liberally in Com-
puter Modern. For example, circular pens draw the
rectangular stems, since the technique makes param-
eterization of stem widths and rounding of corners
somewhat easier, and the serif programs take care
of squaring off the round corners for Roman faces.

The logical shape primitives OR and NOT.

Once MetaFog expands any stroked paths to en-
velopes, it can proceed to intersect overlapping
paths. MetaFog must compute all possible multi-
ple intersections of each pair of curves in a path,

Figure 4: Envelopes computed for various Bézier
strokes of an elliptical pen.

instead of assuming only one possible intersection
as in METAFONT. (Two Bézier curves can have 8
intersections—try to find an example using your
favorite drawing program!). MetaFog computes
all intersections using an exhaustive extension to
the recursive, numerical solution Knuth used in
METAFONT; a closed-form solution employing ze-
roes to cubic polynomials is also possible but not
implemented. Computing all such intersections and
reconstituting the shapes with new knots at all in-
tersections in the general case is a difficult problem
which consumes most of MetaFog’s running time.

Weeding. The MetaFog weeder is a visual tool
which allows a human operator to examine and
hand-correct the output from automatic conver-
sions. Manual input to the conversion process is
vital, becauseMETAFONT output often has degener-
ate shapes and intersections that defy an automatic
solution. In such cases, MetaFog cannot determine
which shapes are overlapping, and so outputs a
partial solution to the topological problem; the
weeder allows the human designer to choose the
proper Bézier shapes from intermediate METAFONT
elements.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 237



Richard J. Kinch

Figure 5 shows the weeding display for char-
acter ‘m’ of cmti10. The display shows each of
the Bézier curves of the input shapes, intersected
and broken into separate pieces. The user has in-
voked MetaFog in “minimal” mode (which is guar-
anteed to succeed), which means that all curves used
in computing envelopes of strokes are retained; an
“intermediate” mode (which does not always suc-
ceed) reduces each envelope to the exterior curves.
Note how MetaFog has stroked a circular pen along
Bézier paths and produced curves for the envelope.
MetaFog has also inserted new knots where curves
intersect; this computation can be quite complex
since a given curve can have arbitrarily many inter-
section points, resulting in a repeated bisection of
the curve. The human operator uses the mouse to
observe and toggle Bézier segments which make up
the correct envelope of the character; each segment
changes color as it toggles on (blue) or off (red).
Toggling proceeds quickly because the mouse click
need only be near (not necessarily on) the desired
curve, clicks are buffered when the operator out-
paces the CPU, and a second click will toggle off
any inadvertently erroneous selections.

Figure 5: Weeder display for cmti10 ‘m’

The weeder’s user interface is optimized for
speed. The PC’s numeric keypad provides conve-
nience functions, so that the operator keeps one
hand on the mouse and the other on the function
keys. The operator can quickly switch between
displaying all curves and displaying selected curves
only. Previewing selected curves only gives an accu-
rate check that no segments are missing and that no
extra segments are selected. Zoom-in and zoom-out
allow the operator to pick through “busy” areas
where many curves lie very close together. After
toggling all the exterior edges of the glyph, the

operator visually checks the glyph for proper con-
struction, and finishes by exporting the character.
During export, the weeder takes care of optimizing
the output curves by removing redundant control
points. Keypad functions allow the user to flip
quickly through all the glyphs in a font. This allows
careful previewing and weeding of any glyphs that
need touch-up from MetaFog. A checkplot program
produces a printout of all the glyphs in a font for
checking and documentation.
In the worst case, MetaFog can always produce

a fully-intersected set of shapes with elliptical pen
envelopes (if any) already expanded. The operator
of the weeder then has a more detailed pointing job,
but the result will be just as perfect as an automatic
solution.
Figure 6 shows the MetaFog weeder view of

cmsy10’s calligraphicA. This illustrates how a tilted
elliptical pen strokes a Bézier path in slanted coor-
dinates.

Figure 6: Weeder display for cmsy10 calligraphic
A, illustrating envelopes of elliptical pen strokes

A few cases of the calligraphic capitals con-
tain tightly turning curves which require hand-
corrections using the weeder.

Hinting. Rendering fonts on low-resolution devices
like video displays and laser printers requires heuris-
tic help to yield a pleasing result. Without such
help, the bit maps will have unnatural bumps, stems
will be of uneven width, and drop-outs will occur.

METAFONT handles these matters in the chap-
ter “Discreteness and Discretion” of the The META-
FONTbook and via mode_def items like fillin and
o_correction. The Type 1 font language allows
the designer to add “hinting” for the same purpose.
TrueType calls the same notion “instructions”.
Since most of the industry effort in this regard has

238 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting



MetaFog: Converting METAFONT Shapes to Contours

been expended on Type 1 font hinting, “hinting”
has become the generic term for this aspect of font
design.

METAFONT has significant modeling differences
from the outline font hinting methods, so there is no
translation possible to automatically make a hinted
outline font from a METAFONT design.
Hinting can be applied after the translation, ei-

ther automatically by auto-hinting software (yield-
ing a poor to modest result) or by a skilled pro-
grammer (yielding the best results, given enough ex-
pert effort). The big problem with adding hints in
this “post facto” manner, is that the hints become
detached from the original METAFONT programs,
and any change to the meta-fonts will require re-
peating the manual hinting effort. The biggest loss
here is that the meta-ness of METAFONT programs
does not carry over to post-facto hand-hinting; one
METAFONT character program makes variants like
bold, italic, sans serif, etc., but each variant must
be independently hand-hinted. Another important
example is that most of the METAFONT programs
for the DC fonts repeat programs from Computer
Modern, but such redundancies would not be usable
after translation to outline formats. Outline-format
fonts do suffer from an inability to exploit these re-
dundancies, and serious font designers typically have
in-house tools to overcome this problem.
Since METAFONT hinting does not carry over

to Type 1 or TrueType hinting, the ideal solution
would be to enhance the Computer Modern META-
FONT programs to contain new hinting information
suitable for translation to other forms. Type 1
and TrueType hinting employ a limited number
of techniques, which depend on the exact coordi-
nates and design of each particular character. A
programmer could add each hint and the associ-
ated coordinates to each character’s METAFONT
program in the form of pseudo-comments. A hint-
translator program would convert the METAFONT
pseudo-comments into Type 1 hint programs or
TrueType instructions. Making the shape transla-
tion independent of the hint translation would allow
adjusting shapes or hints independently, without
having to re-run both aspects of the translation.
The pseudo-comment language would be designed
to represent the various hinting technologies and
to exploit any commonality between them. The
METAFONT language is well-suited to an extension
of this sort.
For example, Type 1 “flex” hinting needs to

know the size and position of what is called the
“dish” concavity in the Computer Modern serifs.
Addition of this information to the Type 1 fonts

improves the rendering of serifs. While this infor-
mation is present in the METAFONT programs, it is
lost in the process of translation to output shapes.
The proposed method of pseudo-comments and hint-
translator would preserve and translate this infor-
mation. Hints are typically applied to stems, bowls,
bulbs, and other character features, andMETAFONT
is quite aware of the pertinent coordinates of these
items.

This is also a database problem. One of the
difficult tasks of translating TEX fonts is the surfeit
of them. Just between Computer Modern and the
DC fonts, spread across various optical sizes, there
are several hundred fonts each having 128 or 256
glyphs. Given that the typical glyph outline con-
tains dozens of endpoints, each having 3 pairs of
coordinates, one can see that the translation enter-
prise involves millions of coordinates. Organizing
this information into glyph data, character names,
fonts, character metrics, encodings, accent compo-
sition rules, version controls, kerning pairs, ligature
rules, font families, output formats, hinting data,
and so on is a substantial database problem. Since
we want to exploit redundancies like common sub-
sets between OT1 and T1 encodings, we especially
need a capable database approach to managing this
information.
MetaFog uses more of a rapid-prototype ap-

proach. Shell scripts manage the various steps in
translating a given font: running METAPOST to get
intermediate conversions; running MetaFog itself to
convert all or part of a given font to outlines, assem-
bling various files for a C program makefont which
assembles individual character data into complete
Type 1 fonts, including insertion of extrema points,
initial production of an AFM file, and a TEX vir-
tual font file. Tables keep track of redundancies be-
tween characters and fonts so that a given META-
FONT glyph need only be translated once. Tables
such as encoding vectors are typically kept in ASCII
form and look-ups are performed by shell scripts.
Glyph information is kept in PostScript or pseudo-
PostScript form and rapidly manipulated by C pro-
grams built from common function libraries.
To finish the fonts, we use several outside util-

ities. The programs of Hetherington’s t1utils col-
lection take care of the details of conversions to and
from the encrypted Type 1 font format, so that
MetaFog need be concerned only with ASCII Type 1
output. We also test the fonts with all the commer-
cial font editors currently available: Fontographer,
Fontmonger, Type Designer, and FontLab; we use

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 239



Richard J. Kinch

Fontmonger to convert the Type 1 fonts to True-
Type form.
If we were to repeat the implementation, one

might consider using a relational database to store
the information, with query scripts and C programs
doing the detailed work.

Optical Overkill. Fonts as they are used in oper-
ating systems today do not favor the optical scal-
ing which TEX is adept at exploiting. For example,
TEX uses eight optical sizes of the Computer Modern
Roman font (5–10, 12, and 17 points). This is too
many optical sizes—do we really need every step
from 5 to 10 points? No doubt this was encouraged
by the METAFONT facility at optically scaling with a
simple parameter change. But with the various em-
bellishments of bold, italic, and so on, a minimally
complete Computer Modern font set yields over 100
discrete fonts.
Users today are not accustomed to seeing so

many fonts associated with an application. TEX has
a distinctly archaic atmosphere in this regard. Oper-
ating systems that manage fonts are taxed to handle
the plethora of tiny variations in TEX fonts.
Lately this overkill of optical sizes has worsened

with the NFSS, which does a good job of hiding op-
tical sizes from the user, but encourages the style
designer to multiply them.
The pain is excruciating with regard to out-

line translation, where essentially identical problems
with slight variations are repeated many times. We
would urge restraint on TEX experts when it comes
to selecting optical sizes.

Comparisons of Various Approaches

Let us compare a typical Computer Modern glyph as
translated to outline form by various methods. Fig-
ures 7 through 12 show the output for ‘R’ of cmr10
from various conversions.
Note that Figure 7 and Figure 8 show extra,

relocated, missing, or artifact control points which
have lost the symmetry of the METAFONT control
points. The autotracing method used is evident in
these examples.
Figure 9 has retained most of the METAFONT

control points but also inserted artifacts. Figures 10
and 11 show the set of true METAFONT pieces from
an intermediate step, where MetaFog has expanded
the circular pen strokes into their Bézier envelopes.
Figure 12 shows how MetaFog retains the META-
FONT control points exactly, including all the oc-
tants and all the symmetry; there are no extra or
artifactual control points. In comparing Figures 9
and 12, note that the tip of the leg in the BaKoMa

conversion develops an asymmetry, that the flat top
of the tip has narrowed, and that the 45 degree
control points are missing from the bowl and serif
curves (which will underspecify these curves). The
MetaFog conversion retains the proper symmetry,
flatness, and precision, which are all aspects of this
character readily observed in the METAFONT proof
in Computer Modern Typefaces.

Missing flat
Missing

flat

M
is

si
n
g
 s

y
m

m
et

ry

Figure 7: Blue Sky Research autotraced
conversion.

X-Rays reveal bugs in Computer Modern.

MetaFog allows more detailed visualization of char-
acter designs than METAFONT proofs. While the
proofs show reference points and marked areas,
they cannot show most of the relevant geometric
information. Indeed, few of the knots, not all the
outlines, and none of the stroked pen envelopes are
accessible in METAFONT. Since MetaFog converts
and manipulates all these items, it can also plot
them in a convenient form. This yields a new and
sometimes surprising “x-ray” view of a charac-
ter—a view unavailable in METAFONT. MetaFog’s
output files use a PostScript format so that proof
pictures plot on any PostScript output device. The
weeder is also a convenient visual tool for such
views.
Surprising aspects to some of the Computer

Modern designs show up in the “x-rays”. The para-
metric nature of meta-designed features becomes vi-
sually apparent, and bugs in the design are clear
where they were not before. Figure 13 shows how
the serif subroutine has introduced an unexpected

240 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting



MetaFog: Converting METAFONT Shapes to Contours

Asymmetry,

missing flat,

too busy

M
is

si
n
g
 d

is
h

Figure 8: PCTEX autotraced conversion.

inflection in cmbx5 letter ‘x’. Since the loss removes
just a few pixels likely to be filled in physically by
most marking engines and optically by the human
eye, the error is not obvious in normal usage or on
METAFONT proofs. It becomes clear, however, dur-
ing the MetaFog weeding.
Figure 14 shows how joining of the “beak” to

the arm on digit ‘7’ becomes distorted at smaller
sizes. This error is easily missed on proofs but is
visible under magnification. If you magnify and
carefully examine the actual-size proofs in the Com-
puter Modern Typefaces (Volume E of Computers
& Typesetting), this error is visible as a row or two
of extra pixels at the top of the character.
A frank error in dcr10’s ‘thorn’ was easily dis-

covered in this way, although it had escaped all the
proof checks and actual usage for several years (Fig-
ure 15). The bottom serifs have an extra “step”,
which on bit-mapped proofs looks like a purposeful
fillet. On the MetaFog conversion it appears clearly
as an error. (This error has been corrected in the
autographs pursuant to this discovery, and does not
appear on more recent versions.)

Is There an Exact Translation?

Is an exact translation possible? We used the stan-
dard of 1 pixel on a 2048 pixel/em grid. No doubt
the “noise” of digitization and hinting creates many
more varying pixels than this standard of error.
There is no outline that will render the same bit
map in a Type 1 or TrueType engine as METAFONT

A
sy

m
m

et
ry

T
o
o
 w

id
e

Missing knot

A
sy

m
m

et
ry

Figure 9: BaKoMa conversion.

would render for a METAFONT program. The font
format itself requires that we must approximate
sixth-degree pen strokes with third-degree pieces.
METAFONT cannot draw proof picture of the under-
lying curves, it can only produce a high-resolution
bit map. And finally, device-specific mode defini-
tions in METAFONT result in significant changes to
the “proof mode” device.
So there is no such thing, in a practical sense, as

an exact translation, because there is no exact shape
to what a METAFONT program describes! Perhaps
we should instead speak in terms of an “ideal” trans-
lation.

Sample Output

A sample of MetaFog conversion, namely cmr10 in
Type 1 format, is available at:

FTP://ftp.netcom.com/pub/Tr/TrueTeX

This is an unhinted font suitable for viewing in a font
editor, but not suited for textual use. MetaFog itself
is a proprietary product, and is not in the public
domain.

Colophon

We drafted this paper using the TrueTEX imple-
mentation of LATEX2ε for Windows, which allowed
WYSIWYG previewing and printing, including all
graphic images. We used three kinds of figures, and
processed them all through Corel Draw 5: ordinary
drawings, MetaFog imports, and screen snapshots.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 241



Richard J. Kinch

Figure 10: MetaFog intermediate step (overlaid),
showing both explicit METAFONT shapes and
Bézier envelopes of circular pen strokes.

We created figures like the Bézier curve and el-
lipse examples using Corel Draw’s drawing tools;
MetaFog-output figures by importing MetaFog’s
PostScript-like output into Corel Draw; and screen
snapshots by capturing with Corel Capture and
pasting into Corel Draw via the Windows clip-
board. We used the figures in Corel Draw to export
Encapsulated PostScript (EPSF) files and inserted
the files as TEX figures using the epsfig pack-
age for LATEX. The TrueTEX dvips-compatible
special-handlers allowed both screen previews and
printing of the EPSF figures, including printing on
a non-PostScript laser printer. We used Corel Draw
to print overhead transparencies of the figures.
Draft copies and transparencies were imaged on an
HP 4M Plus laser printer. The Proceedings editors
use LATEX and dvips, so that no conversions were
necessary between the author’s submission and the
final production.

References

Adobe Systems. Adobe Type 1 Font Format, version
1.1. Addison Wesley, 1990.

L. Carr. “Of METAFONT and PostScript”.
TEXniques 5, TEX Users Group, 1987.

A. Glassner, editor. Graphics Gems. Academic
Press, Cambridge, MA, 1990.

D. Henderson. “Outline fonts with METAFONT”.
TUGboat 10(1), 36–38, 1989.

Figure 11: MetaFog intermediate step
(exploded). The “dish” at the bottom is a
white shape which subtracts from the serifs.

J. D. Hobby. “A METAFONT-like system with Post-
Script output”. TUGboat 10(4), 505–512, 1989.

B. Malyshev. “Automatic conversion of METAFONT
fonts to Type1 PostScript”. TUGboat 15(3),
200–200, 1994.

S. Yanai and Berry, Daniel M. “Environment for
translatingMETAFONT to PostScript”.TUGboat
11(4), 525–541, 1990.

242 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting



MetaFog: Converting METAFONT Shapes to Contours

Symmetric,

narrow

flat

Sym-

metric

Flat

45 degree

control

points

Figure 12: TrueTEX conversion via MetaFog.

2.5x

2.5x

Figure 13: Error in CM serifs (cmbx5)

Figure 14: Error in CM digit 7 (cmbx5)

Step

Figure 15: Error in DC thorn (dcr10)

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 243


