
304 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

The Calculator Demo

Hans Hagen
pragma@pi.net

Abstract

Due to its open character, TEX can act as an authoring tool. This article demon-

strates that by integrating TEX, METAPOST, JavaScript and PDF, one can build pretty

advanced documents. More and more documents will get the characteristics of pro-

grams, and TEX will be our main tool for producing them. The example described here

can be produced with PDFTEX as well as traditional TEX.

Introduction

When Acrobat Forms were discussed at the PDFTEX

mailing list, Phillip Taylor confessed: “ . . . they’re
one of the nicest features of PDF”. Sebastian Ratz
told us that he was “. . . convinced that people are
waiting for forms.”. A few mails later he reported:
“I just found I can embed JavaScript in forms, I can
see the world is my oyster” after which in a personal
mail he challenged me to pick up the Acrobat Forms
plugin and wishing me “Happy JavaScripting”.

sin cos tan max exp ceil x2 x! xy rad

asin acos atan min ln floor sqrt round 1/x deg

7 8 9 / del

4 5 6 * E

1 2 3 – pop

0 . - + push

n

min

max

total

mean

sdev

new new +n –n

–x random pi e dup exit info

new +m –m mem grow

Figure 1 The calculator demo.

At the moment that these opinions were shared, I al-
ready had form support ready in CONTEXT, so pick-
ing up the challenge was a sort of natural behaviour.
In this article I’ll describe some of the experiences
I had when building a demo document that shows
how forms and JavaScript can be used from within
TEX. I also take the opportunity to introduce some
of the potentials of PDFTEX, so let’s start with in-
troducing this extension to TEX.

Where do we stand

While ε-TEX extends TEX’s programming and typo-
graphic capabilities, PDFTEX primarily acts at the
back end of the TEX processor. Traditionally, TEX

was (and is) used in the production chain:

ASCII → TEX → DVI → whatever

The most versatile process probably is:

ASCII → TEX → DVI → POSTSCRIPT

or even:

ASCII → TEX → DVI → POSTSCRIPT → PDF

All functionality that TEX lacks, is to be taken care
of by the DVI postprocessing program, and that’s
why TEX can do color and graphic inclusion. Espe-
cially when producing huge files or files with huge
graphics, the POSTSCRIPT → PDF steps can become
a nuisance, if only in terms of time and disk space.

With PDF becoming more and more popular, it
will be no surprise that Han The Thanh’s PDFTEX

becomes more and more popular too among the TEX
users. With PDFTEX we can reduce the chain to:

ASCII → TEX → PDF

The lack of the postprocessing stage, forces PDFTEX

(i.e. TEX) to take care of font inclusion, graphic in-
serts, color and more. One can imagine that this
leads to lively discussions on the PDFTEX mailing
list and thereby puts an extra burden on the devel-
oper(s). Take only the fact that PDFTEX is already
used in real life situations while PDF is not stable
yet.

To those who know PDF, it will be no surprise
that PDFTEX also supports all kind of hyper refer-
encing. The version1 I used when writing this article
supports:

1. link annotations

1 Currently I’m using β--version 1.12g.



The Calculator Demo

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 305

The Calculator

This calculator is stack based, which means that one enters values and invokes an action that acts on the value(s) last entered. Subtracting

10 from 20 using (–) for instance comes down to clicking:

10 in 20 –

while calculating a sinus (sin) results from entering:

.89 sin

The left column of fields (numbers) shows the Stack. One uses push to push a value on the stack and pop to remove a value. Clicking

new removes them all and the del button can be used to undo the last entered digit. When a dyadic operation is applied, the top value is

used as y. The grow key toggles between two different visualizations of the stack.

The stack is considerably larger than the screen representation suggests. In the rare occasion that one encounters the message exhausted,

the amount of stack entries already has totaled far beyond 50 and one probably already has forgotten what the values first entered represent.

The right column of fields reports the statistic calculations. By clicking on the tag, one pushes the value on the Stack. The lower buttons

are used to reset (new), enter (+) and remove (–) values to be taken into account when calculating those statistics.

This document is produced by CONTEXT, a macro package based on TEX. METAPOST graphics, PDF objects and form fields as well as

JavaScript code were generated and inserted at run time. I owe many thanks to Philip Taylor for his testing and suggestions.

Hans Hagen, PRAGMA ADE, CONTEXT 18/2/1998

pragma@pi.net

Figure 2 The help information screen.

2. screen handling
3. arbitrary annotations

where especially the last one is accompanied by:

4. form objects
5. direct objects

and of course there is also:

6. extensive font support

Be prepared: PDFTEX’s font support probably goes
(and certainly will go) beyond everything DVI

drivers as well as Acrobat supports!
TEX stands in the typographic tradition and

therefore has unsurpassed qualities. For many thou-
sands of years people have trusted their ideas to pa-
per and used glyphs for communication. The last
decades however there has been a shift towards me-
dia like video, animations and interactive programs
and currently these means of communication meet
in hyper documents.

Calculate the sine of the topmost stack entry.

Figure 3 The sin(x) screen.

Now what has this to do with PDFTEX. Recently
this program started to support the PDF annota-

tions other than the familiar hyperlink ones. As
we will see later on, this enables users of TEX to
enhance their documents with features that until
now had to be programmed with dedicated tools,
which could not even touch TEX’s typographic quali-
ty. This means that currently TEX has become a tool
for producing rather advanced documents within the
typographic and (largely paper based) communica-
tion traditions. Even better, by using PDF as medi-
um, one can produce very sophisticated interactive
documents that are not bound to ill documented
standards and programs and thereby stand a better
chance to be accessible for future generations.

The calculator demo

The document described here is produced with
CONTEXT. This document represents a full featured
calculator which took me about two weeks to design
and build. Most of the time was spend on defining
METAPOST graphics that could explain the func-
tionality of the buttons.2 Extending CONTEXT for
supporting JavaScript took me a few days and the
rest of the time was spend on learning JavaScript
itself.

The calculator demo was first developed using
DVIPSONE and Acrobat. At that moment, PDFTEX

did not yet provide the hooks needed, and the demo
thereby served as a source of inspiration of what
additional functionality was needed to let PDFTEX

produce similar documents.
Throughout this article I show some of the

screens that make up the calculator demo. These
graphics are no screen dumps but just POSTSCRIPT

inclusions. Just keep in mind that when using TEX,
one does not need bitmap screen dumps, but can
use snapshots from the real document. A screen,
although looking as one graphic, consist of a back-
ground with frame, a centered graphic, some addi-
tional text and an invisible active area the size of
the gray center.

The demo implements a stack based calculator.
The stack can optionally grow in two directions, de-
pending on the taste of the user. Only the topmost
entries of about 50 are visible.

The calculator demo, called calculator.pdf,
itself can be fetched from the PDFTEX related site:

http://www.tug.org/applications/pdftex

or from the CONTEXT repository at:

2 This included writing some auxiliary general purpose
METAPOST macros.



Hans Hagen

306 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

Push the standard deviation to the stack.

Figure 4 The standard deviation screen.

http://www.ntg.nl/context

The calculator is defined in one document source
file, which not only holds the TEX code, but also
contains the definitions of the METAPOST graphics
and the JavaScript’s. I considered including a movie
(video) showing an animation of our company logo
programmed in METAPOST and prepared in Adobe
Premiere, but the mere fact that movies are (still)
stored outside the PDF file made me remove this
feature.

Now keep in mind that, when viewing the calcu-
lator PDF file, you’re actually working with a docu-
ment, not a program. A rather intelligent document
for that matter, but still a document.

Forms and annotations

Before I go into details, I’ll spend some words on
forms and annotations in PDF. To start with the
latter, annotations are elements in a PDF file that
are not related to (typo)graphic issues, like movies
and sound, hyper things, navigation and fill--in--
forms. Formally annotations are dealt with by
drivers plugged into the graphic engine, but in prac-
tice some annotations are handled by the viewer it-
self.

Forms in PDF are more or less the same as in
HTML and once filled in can be send over the net to
be processed. When filling in form fields, run time
error checking on the input can prevent problems
later on. Instead of building all kind of validation
options into the form editor, such validations are
handled by either a dedicated plugin, or better: by
means of JavaScript. Therefore, one can attach such
scripts to all kind of events related to form editing
and one can launch scripts by associating them to
active, that is clickable, areas on the screen.

So we’ve got fields, which can be used to let
users provide input other than mere clicks on hyper

Take the minumum of the two topmost stack entries.

Figure 5 The min(x, y) screen.

links, we’ve got run time access to those fields using
JavaScript, and we can let users launch such scripts
by mouse events or keystrokes, either when entering
data or by explicit request.

Currently entering data by using the keyboard
is prohibited in the calculator. The main reason for
this is that field allocation and access are yet sort of
asynchronic and therefore lead to confusion.3

So, what actually happens in the calculator, is
that a user clicks on a visualized key, thereby launch-
ing a JavaScript that in turn does something to field
data (like adding a digit or calculating a sine), after
which the field data is updated.

JavaScript

Writing this demo at least learned me that in fact
support for JavaScript is just another sort of ref-
erencing and therefore needed incorporation in the
general cross referencing scheme. The main reason
is that for instance navigational tools like menus and
buttons must have access to all cross reference mech-
anisms.

Generate a random number in the range 0–1.

Figure 6 The random number screen.

3 Initializing a field from within JavaScript is not possible
unless the viewer has (at some dubious moment) decided
that the field indeed exists.



The Calculator Demo

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 307

Consider for instance buttons . We already support-
ed:

\button{...}[the chapter on whatever]

\button{...}[otherdoc::some topic]

\button{...}[previouspage]

\button{...}[PreviousJump]

Here the first reference is an internal one, often a
chapter, a table or figure or a bibliography. The
second one extends this class of references across
documents. The third reference is a predefined inter-
nal one and the last reference gives access to viewer
controls. As we can see: one scheme serves different
purposes.

Calculate the recursive multiplication of n, n–1, n–2, etc.

Figure 7 The period (.) screen.

Launching applications and following threads can
quite easily be included in this scheme, but
JavaScript support is different. In the calculator
there are for instance 10 digit buttons that all do
the same action and only differ in the digit involved.
Here we want just one JavaScript to be reused 10
times. So instead of saying:

\button{0}[javascript 0]

\button{0}[javascript 1]

we want to express something like:

\def\SomeDigit#1%

{\button{0}[javascript #1]}

\SomeDigit{4}

This means that in practice we need a referencing
mechanism that:

• is able to recognize JavaScript
• is able to pass arguments to these scripts

So finally we end up with something:

\button{7}[JS(digit{7})]

This call tells the reference mechanism to access the
JavaScript called digit and pass the value 7 to it.
Actually defining the script comes down to just say-
ing:

\startJScode{digit}

Stack[Level] += String(JS_S_1);

do_refresh(Level); //\ E

\stopJScode

One can pass as much arguments as needed. Here
JS_S_1 is the first string argument passed. Pass-
ing cross reference arguments is also possible. This
enables us to let users jump to locations depend-
ing on their input. Such arguments are passed as
R{destination} and can be accessed by JS_R_1.

Add a digit 7 to the current stack entry.

Figure 8 The digit 7 screen.

In practice one will separate functions and calls
by using preambles. Such preambles are document
wide pieces of JavaScript, to be used whenever ap-
plicable.

\startJSpreamble{functions}

// begin of common functions

function do_digit(d)

{ Stack[Level] += String(d);

do_refresh(Level) }

// end of common functions //\ E

\stopJSpreamble

and:

\startJScode{digit}

do_digit(JS_S_1); //\ E

\stopJScode

From these examples one can deduce that indeed the
actual JavaScript code is included in the document
source. It’s up to TEX to pass this information to



Hans Hagen

308 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

the PDF file, which in itself is not that trivial given
the fact that one (1) has to strip comments, (2) has
to convert some characters into legal PDF ones and
(3) must pass arguments from TEX to JavaScript.

Simple cases like the digit code fragment, can
also be passed as reference: JS(digit{1}). By de-
fault CONTEXT converts all functions present in the
preambles into such references. One can organize
JavaScripts into collections as well as postpone in-
clusion of preambles until they are actually used.

Erase the memory buffer.

Figure 9 The memory erase screen.

Currently the only problem with including pream-
bles lays in the mere fact that Acrobat pdfmarks4

do not yet offer a mechanism to enter the JavaScript
entries in the appropriate place in the document cat-
alog, without spoiling the collected list of named
destinations. Because CONTEXT can be instruct-
ed to use page destinations when possible, I could
work around this (temporary) Acrobat pdfmark and
PDFTEX limitation. At the time this article is pub-
lished, PDFTEX probably handles this conceptual
weak part of PDF in an adequate way.

METAPOST graphics

All graphics are generated at run time using
METAPOST. Like the previous mentioned script,
METAPOST code is included in the source of the
document. For instance, the graphic representing π

is defined as:

\startuseMPgraphic{pi}

pickup pencircle scaled 10;

draw fullcircle

scaled 150

withcolor .4white;

linecap := butt;

ahlength := 25;

drawarrow halfcircle

scaled 150

withcolor \MPcolor{action};

\stopuseMPgraphic

and called

\useMPgraphic{pi}

Push 3.14159265358979 onto the stack.

Figure 10 The π screen.

Just like the JavaScript preamble we can separate
common METAPOST functions by defining inclu-
sions. The next one automatically loads a module
with some auxiliary macros.

\startMPinclusions

input mp-tool;

\stopMPinclusions

The mechanism for including METAPOST graphics
is also able to deal with reusing graphics and running
METAPOST itself from within TEX. In CONTEXT all
processed METAPOST graphics are automatically
translated into PDF by TEX itself, colors are con-
verted to the current color space, and text is dealt
with accordingly. Of course one needs to take care
of proper tagging, but the next macro does this well:

\def\SomeShape#1#2%

{\startreuseMPgraphic{shape:#1#2}

draw fullcircle

xscaled #1

yscaled #2

\stopreuseMPgraphic

\reuseMPgraphic{shape:#1#2}}

Now we can say:

\SomeShape{100pt}{200pt}

\SomeShape{150pt}{180pt}

\SomeShape{120pt}{110pt}

Which just inserts three graphics with different sizes
but similar line widths.

4 These are extensions to the POSTSCRIPT language.



The Calculator Demo

TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting 309

Remove the topmost entry from the stack.

Figure 11 The pop stack screen.

Backgrounds

Now how do we attach such shapes to the buttons?
Here we introduce a feature common to all framed
things in CONTEXT, called overlays. Such an overlay
is defined as:

\defineoverlay

[shape]

[\MPshape

{\overlaywidth}

{\overlayheight}

{\overlaycolor}]

The shape called \MPshape is defined as:

\def\MPshape#1#2#3%

{\startreusableMPgraphic{fs:#1#2#3}

path p ;

p := unitsquare

xscaled #1

yscaled #2;

color c ;

c := #3 ;

fill p

withcolor c ;

draw p

withpen pencircle scaled 1.5

withcolor .8c ;

\stopreusableMPgraphic

\reuseMPgraphic{fs:#1#2#3}}

Such an overlay is bound to a particular framed
thing by saying:

\setupbuttons[background=shape]

Here the right dimensions are automatically passed
on to the overlay mechanism which in turn invokes
METAPOST.

The calculator demo proved me that it is rather
useful to have stacked backgrounds. Therefore
the buttons, which have both a background (the

Add the two topmost stack entries.

Figure 12 The addition (+) screen.

METAPOST drawn shape) and behind that a sort
of help button that is activated by clicking on the
surroundings of the button, have their backgrounds
defined as:

\setupbuttons

[background={infobutton,shape}]

Actually we’re stacking from back to top: an in-
fo button, the key bound button, the background
graphic and the text. One rather tricky side effect
is that stacked buttons interfere with the way ac-
tive areas are output. In this particular case we
have to revert the order of the active areas by say-
ing \reversegototrue.

Object reuse

The button and background graphics are generated
once and used more than once. We already men-
tioned that METAPOST graphics can be reused. In
practice this comes down to producing the graphic
once and including it many times. In PDF however,
one can also include the graphic once and refer to it
many times. In PDF such reused objects are called
forms, a rather unfortunate naming. So, in the cal-
culator demo, all buttons with common shapes as
well as the backgrounds are included only once. One
can imagine that extending TEX with such features
leads to interesting discusions on the PDFTEX dis-
cussion list.

Forms

Although still under construction, CONTEXT sup-
ports PDF fill--in--forms. The calculator demo
demonstrates that such forms can be used as a (two
way) communication channel to the user. Stack val-
ues, statistics and memory content are stored and
presented in form fields, defined by saying something
like:



Hans Hagen

310 TUGboat, Volume 19 (1998), No. 3— Proceedings of the 1998 Annual Meeting

\definefield[Stack.1][line][Results]

followed by

\field[Stack.1]

The characteristics of this line field are set by:

\setupfield

[Results]

[horizontal,frame]

[width=fit,

height=.5\ButtonWidth,

background=shape,

backgroundcolor=\MPcolor{stack},

frame=off]

[width=3.5\ButtonWidth,

frame=off]

[width=3.5\ButtonWidth,

frame=off]

The reader needs some fantasy to grab the meaning
of this rather overloaded setup. The first argument
tags the characteristics, and can be considered some-
thing like a class in object oriented languages. The
second argument tells CONTEXT how to typeset the
field when labels are used, while the last three ar-
guments specify the way fields, their labels and the
envelop that holds them both together are typeset.
In the calculator, the labels are suppressed.

Toggle grow mode, another way of stacking.

Figure 13 The grow mode screen.

Calculate the recursive multiplication of n, n–1, n–2, etc.

Figure 14 The n! screen.

One reason for decoupling definition and setup, that
is, not attaching characteristics to individual fields,
lays in the fact that I have applications in mind with
thousands of fields and saving characteristics at the
field level that would definitely overload TEX.

Where do we go

The previous examples show us quite clearly that,
although being of old age in terms of computer pro-
grams, TEX is among the few applications that are
able to adapt themselves rather fast to current de-
velopments while at the same time preserving the
high quality and stability its users are accustomed
to. As TEX gave mathematicians the means of cir-
cumventing the often lousy text editing and desk
top publishing output in the early days of comput-
ing, TEX can give its users the high quality and sta-
ble authoring platform they need in this multimedia
age. As demonstrated here, TEX can do a wonder-
ful job not only in producing interactive documents,
but in producing intelligent documents too.




