
366 TUGboat, Volume 19 (1998), No. 4

EncTEX — A little extension of TEX

Petr Oľsák

Motto:
Certainly, if I were a publishing house, if I were
in the publishing business myself, I would have
probably had ten different versions of TEX by now
for ten different complicated projects that had come
in. They would all look almost the same as TEX,
but no one else would have this program— they
wouldn’t need it, they’re not doing exactly the book
that my publishing house was doing.

Donald E. Knuth, Prague, March 1996

−− ∗ −−

This article describes a simple change to TEX which
makes it possible to manipulate the internal TEX
vectors xord and xchr. These vectors are used to
convert input encoding into TEX internal encoding
and vice versa. For example, emTEX users (DOS or
OS/2) know the so-called tcp tables which are used
to set xord and xchr values. On the other hand
UNIX users have no chance to reset these values
once the TEX binary is compiled. The modification
of TEX described below enables something similar
to emTEX tcp tables. It is independent of the
operating system. You can implement it in all TEX
systems where the TEX program is compiled from
WEB source files. I have tested my modification
on UNIX systems with the web2c implementation of
TEX.

There exist so far two options how to work
with reencoding on UNIX web2c implementations.
The first one is Skarvada’s patch [3]. This solution
implements several reencoding tables directly into
the TEX source and the user cannot change these
tables at TEX run time. The encoding table is
selected by an environment variable. It is not saved
into generated formats during iniTEX. I think, this
solution is not so flexible.

The second option was implemented through
tcx files by Karl Berry. It is commented out
in current web2c sources with the following note:
“tcx files are probably a bad idea, since they
make TEX source documents unportable. Try the
inputenc LATEX package.” I know the xord/xchr
reencoding solution is not compatible with the
inputenc package, but nevertheless I disagree with
the note above. I have the following arguments:
• The inputenc package is a solution for LATEX

only, but TEX is used via other formats too.
• The log files and the terminal outputs are not

legible if an overfull/underfull box of Czech

TUGboat, Volume 19 (1998), No. 4 367

text is reported. The ^^ notation is absolutely
funny. If section 49 of tex.web is changed
(via tex.ch of course) in the following way:
(k<" ")or(k=invalid_code), the ^^ notation
no longer occurs and the text is legible. But
if inputenc is used with different internal TEX
encoding, the Czech sentences in log files are
still not legible.
• The reencoding is an implementation problem,

it is not the problem of a naive user, who must
write \usepackage[bla]{inputenc}. He or
she has no knowledge about encoding used in
his/her OS. He or she perceives the command
\usepackage[bla]{inputenc} as very mysti-
cal.
• If the LATEX document is sent via e-mail with

MIME (or similar methods of transport), the
reencoding is done by e-mail agents and the
document is properly encoded for the OS of the
receiver. The \usepackage[bla]{inputenc}
is not automatically changed in the LATEX
header, thus if the sender and the receiver
work in different encodings —oops —Houston,
we have a problem. I think, the reencoding
must be solved by software for transportion
between different OSes (e-mail agents or WWW

servers/clients, for example) and this problem
should not be solved in the LATEX header.

• The inputenc package sets active \catcodes to
accented characters. So Olšák is expanded to
Ol\v s\’ak, and therefore you cannot define
the control sequence \Olšák. Accented letters
have \catcode=13 but \catcode=11 is needed.
• Donald Knuth has implemented the xord/xchr

vectors into TEX to separate the encodings
used in an OS and the internal TEX encoding
(because text fonts used in TEX are independent
of OS). Administrators can set up xord/xchr
values during the TEX WEB source state, but
they usually don’t do it. This is because there
are many TEX implementations with binary
TEX only. Even if the TEX WEB source
is available, setting xord/xchr is somewhat
difficult for some administrators. But if the
xord/xchr setting is possible during the iniTEX
state, the administrators will be more flexible to
choose the right setting for their OS.
• I think Donald Knuth did not take into ac-

count the possibility to reencode during the
expand processor state, as it is done by the
inputenc package. Just consider that the
\uppercase, \lowercase primitives do their
work on 〈balanced text〉 before expanding using

\uccodes and \lccodes, which are used in the
hyphenation algorithm after expanding.

My solution to the reencoding problem is more
general than the tcp tables or the tcx files, because
the encTEX tables are read during iniTEX simply
by using \input and are defined by TEX macros.
I have implemented three new primitives into TEX:
\xordcode, \xchrcode and \xprncode. They en-
able to set and read the values of xord and xchr
vectors and to set the “printability” attribute of
any character. A new quality is introduced: the
xord/xchr vectors may be set independently. This
opens great new possibilities.

A technical introduction

The xord vector is 256 bytes long and stores
the reencoding information for inputting characters
from a text file into TEX. The xchr vector has the
same length and stores the reencoding information
for outputting characters from TEX to the terminal,
to logs and to the text output files created through
\write, but does not influence output to dvi files.
These vectors are built into the program. All text
information during input or output is reencoded by
these vectors. If the input character has an external
code x and an internal code y in TEX, the xord
vector must be set the following way: xord[x] = y.
The rules for the output characters are as follows: If
the character with internal code y is not assumed to
be “printable” then the ^^code y is output, other-
wise the character with code x = xchr[y] is written.

The encTEX package

The installation of encTEX was tested on web2c
version 7. If we have the WEB sources of this
implementation of TEX then the command

patch <enctex.patch

in the directory with tex.ch installs the encTEX
package. After that, the new compilation of the TEX
binary (make tex) is needed. For more details see
the INSTALL.eng file.

The patch changes the tex.ch file only. No
other files including the C libraries are changed.
The make tex command runs tangle on the main
source file tex.web and on the changed change-file
tex.ch. The Pascal source file tex.p is created and
it is converted into C by the convert script and
afterwards it is compiled into the run time binary
tex.

Different TEX implementations (than web2c)
can have different tex.ch files, thus the simple
patch command (for web2c) may not be applicable.
For that reason the enctex.ch file is included. All

368 TUGboat, Volume 19 (1998), No. 4

encTEX specific changes are described in this file.
You can modify your tex.ch file manually using
information from this file.

The encTEX modification is independent of the
operating system and of the TEX implementation
because all the changes are done in a WEB change
file exclusively.

After encTEX is installed, you can set and
read the values of xord and xchr vectors by new
primitives \xordcode and \xchrcode. You can set
the “printability” attribute of the character by the
new primitive \xprncode. The syntax of all three
new primitives is the same as the syntax of the
\lccode or \uccode primitives. For example:
\xordcode"AB="CD \xchrcode\xordcode"AB="AB
\the\xchrcode200

sets xord[0xAB]=0xCD, xchr[xord[0xAB]]=0xAB
and, as a result of the second line, the value of
xchr[200] is printed in this example.

The new primitive \xprncode enables to set
the “printability” attribute of the character. The
character with internal code y is “printable” if
and only if y ∈ {32 . . .126} or \xprncode y > 0.
For example, if we set \xprncode255=1, then the
character with code 255 is “printable” and it will
be printed as a character with the code xchr[255].
On the other hand, setting \xprncode^ to zero does
not cause “non-printability” because the code of the
character “^” is in {32 . . .126}. It is a kind of
“self-defence instinct” against an unsound user who
could set all characters to be “non-printable” and
the printing ability of the program may be lost. The
\xprncode primitive can take any value from the
range 0 . . . 255, but remember the rule — “printable”
if \xprncode is positive.

There is an important difference between the
new encTEX primitives and well-known primitives
like \lccode or \catcode. The new primitives
represent internal TEX registers and are global under
any circumstances. You can set their values in a
group and these settings are not changed at the
group end. I rejected the possibility of local settings
(via the eqtb table) in order to achieve more efficient
code.

The initial values, when iniTEX starts, are the
following:

\xordcode i= i for i ∈ {128 . . .255},
\xchrcode i= i for i ∈ {128 . . .255},
\xprncode i= 0 for i ∈ {0 . . .31, 127 . . .255},
\xprncode i= 1 for i ∈ {32 . . .126}.

The values \xordcode i and \xchrcode i for i ∈
{0 . . . 127} depend on the operating system. If the
system is using the ASCII standard (very common)

then \xordcode i = i and \xchrcode i = i for all i.
If the operating system is using another (obscure)
encoding standard, then 95 printable ASCII internal
codes from {32 . . .126} are mapped into appropriate
codes through corresponding changes in \xordcode
and \xchrcode initial values.

The values of \xordcode, \xchrcode and
\xprncode are stored in the fmt format file and they
are restored during the run of the production version
of TEX.

About the ambiguous encoding

This subsection will describe some issues with xord
and xchr resetting. Let us construct an example.
Say, we need to map the character \’a (having
code 129 in the OS, for example) onto the in-
ternal TEX code 128. So let \xordcode129=128,
\xchcode128=129 and \xprncode128=1. At the
same time the input code 128 is not mapped because
it is never used in the Czech alphabet, for example.
What if I get some file from Poland containing the
character with the input code 128? This character
is mapped to the code 128 (internal in TEX) but it is
returned to \log as the code 129. That means that
TEX is no longer able to distinguish between codes
128 and 129 on its input.

We will describe this phenomenon more exactly.
Let’s use mathematical terminology. Let X =
{0 . . . 255} be a set of input codes and Y = X be
the same set (from mathematical point of view) but
let’s use this letter for a set of the internal codes in
TEX. Let Yp ⊆ Y be a set of all printable characters.
We claim:

Yp = {y; \xprncodey > 0} ∪ {32 . . .126}.
It is obvious that the values of the xchr vector on the
set Y \Yp don’t influence the behavior of the program
output.

Let I : X → Y be the “input” function defined
by the xord vector and O : Yp → X be the “output”
function defined by the xchr vector. The initial
values of xord or xchr ensure that I is bijective and
O is injective and O = I−1 on Yp. This feature gets
lost after the first change of xord or xchr values.
For example, let x 6= y and x ∈ X , y ∈ Yp. Let us
make a simple transposition:

xord[x] = y, xchr[y] = x. (1)

Now, neither I function nor O function are injective!
You can see, xord[x] = xord[y], and a similar
equation holds for the xchr vector. The following
condition must be fulfilled so that our functions are
injective after applying transposition (1) n-times.
The sequence x0, . . . xn must exist with the following

TUGboat, Volume 19 (1998), No. 4 369

properties:

x0 = x, x1 = y and xord[xi] = xi+1

for all i ∈ {0 . . . n−1} and the equation xord[xn] =
x holds. Similar conditions must be fulfilled for the
xchr vector. The problem is, that we apply the
transpositions (1) only on a certain subset of X (for
example on the printable characters or on accessible
characters in a given encoding). Then we need not
be surprised that as a result of our settings neither I
nor O are injective functions and therefore equations
O = I−1 or I = O−1 are senseless. The inversion
exists only if the function is injective.

The encoding tables

There are two types of encoding tables in encTEX.
Both tables are TEX \input files with auxiliary
macros. The files have the common extension
tex. It is recommended to use these tables (or to
modify them to your needs). Don’t use the new
primitives \xordcode, \xchrcode and \xprncode
directly unless you exactly know what you are doing.

The first type of encoding tables

These tables are used during the iniTEX run. The
values of xord/xchr are set symmetrically during
the \input, the transposition (1) is used repeatedly
for setting of the xord/xchr values. The resulting
settings are stored in the format file using \dump and
used in the production version of TEX.

These tables declare the relation of internal TEX
encoding and the encoding used on the host oper-
ating system. For example, our system encoding is
ISO8859-2 and internal TEX encoding is chosen by
the Cork standard (called T1 in LATEX). In this case,
the encoding table name is il2-t1.tex. It redefines
the xord vector to map ISO8859-2 to T1 and the
xchr vector to map T1 back to ISO8859-2. A part
of the il2-t1.tex table is shown in Appendix 1 at
the end of this article.

The first thing every encoding table does is
input the macro file encmacro.tex, which conse-
quently defines macros \setcharcode, \expandto,
\texmacro, \texaccent. See the README.eng file in
the encTEX package for detailed documentation of
these macros.

Secondly, the internal encoding-specific macro
is read. An input of the t1macro.tex file is
performed in our example. The encoding-specific
macros (such as accent definitions) are placed here.
These macros solve similar issues as the fd files for
text fonts in LATEX.

See Appendix 2 for the overview of all tables of
the first type included in encTEX. You can list these
files by

ls *-csf.tex *-t1.tex

EncTEX contains many files prepared for
iniTEX for plain-variant formats. For example, the
command

initex plain-il2-dc

generates the plain format with ISO8859-2 as the
input encoding. This format name is plain-il2-dc,
it includes the hyphenation table in T1 and uses
the dc fonts for text. The content of the
plain-il2-dc.tex file is shown in Appendix 3. The
\input of Knuth’s original plain.tex and the table
il2-t1.tex is performed here.

The second type of encoding tables

The tables of the second type perform reencoding
only on the input side of TEX, so the xord values
are changed but the xchr values are not. The name
convention identifies these tables: the symbols like
t1 or csf are missing in the name, because tables of
this type deal with reencoding from one operating
system standard to another and therefore they are
not related to the TEX internal code.

For example, the table 1250-il2.tex maps the
input characters from CP1250 to ISO8859-2. The
CP1250 encoding becomes a new input encoding
and we assume that the first type of encoding table
il2-*.tex was used in iniTEX.

We can use the table of the second type when a
part of the input document (or the whole document)
has a different encoding from the encoding used by
our operating system. The table of the second type
establishes the relationship to the input encoding
declared in the table of the first type.

For example, the il2-t1.tex table was used
in iniTEX and we have obtained a document in
CP1250. We can write:

\input 1250-il2
\input document
\restoreinputencoding
The ISO8859-2 is restored here.

The double reencoding is active when the
document.tex is read: firstly from CP1250 to
ISO8859-2 and secondly from ISO8859-2 to internal
TEX T1 encoding. The text is output to log, to the
terminal and to \write files in ISO8859-2 encoding.
The ISO8859-2 input encoding is restored after the
\restoreinputencoding command.

370 TUGboat, Volume 19 (1998), No. 4

Attention: it is impossible to reread the \write
files when the table of the second type is ac-
tive. If, for instance, the file document.tex in-
cludes some \write activities (for index, table
of contents and so on), we have to read these
auxiliary files before \input 1250-il2 or after
\restoreinputencoding. That is the reason why
\dump (the format generation) is senseless while
table of the second type is active.

About compatibility

The encTEX extension successfully passes the TRIP

test with two exceptions: 1. The banner is changed.
2. The number of multiletter control sequences is
greater than in original TEX by three.

All changes of TEX which do not change the
behavior of original TEX and only add some new
primitives are backward compatible with Knuth’s
original TEX. It means that if we have written a doc-
ument for original TEX and it is processed through
extended TEX we will get the same results. Here is
one exception though: the macro construction of the
type \ifx\xordcode\undefined has to be missing
in such a document. But, I guess, the probability
of existence of such constructions in documents for
standard TEX is equal to zero.

We have to say that it is possible to write new
macros and documents in extended TEX which are
not backward compatible with original TEX. This is
a disadvantage of all extensions of TEX. We face this
situation both if the extension adds new primitives
directly (as in encTEX or pdfTEX, for example), as
well as if the access to new primitives is hidden
and may be initialized by some trick at the format
generation time (as in e-TEX or MLTEX). The issue
is, how many users will use the new primitives and
who will be a supervisor for the standardization of
these primitives.

In case of my encTEX package, I have no claim
to standardize its primitives into newly developed
TEXs. I have made this extension for my needs and
if somebody likes it, he/she can use it realizing that
his/her documents may not be backward compatible
if he/she uses the new primitives directly. On the
other hand, I meant my primitives to be used pri-
marily while generating formats and not to be used
directly in real documents. Thus the documents can
still be backward compatible.

If an administrator of a multi-user system
installs a TEX format using encTEX, he/she can call
some table of the first type and prohibit the usage
of the new primitives before \dump:
\let\xordcode=\undefined
\let\xchrcode=\undefined

\let\xprncode=\undefined

Thus users can’t access the backward incompatible
extension of encTEX. I recommend this setup for
public sites. If encTEX is used this way exclusively,
then the xord and xchr vectors work as was meant
by the author of TEX: They filter operating system
specific encodings into internal TEX encoding.

The question in my mind is why Donald Knuth
did not introduce primitives similar to mine. He
probably wanted all TEX macros to behave the
same way on various implementations. In this
case the direct access to xord/xchr values was not
acceptable for him. We can use a condition like
\ifnum\xordcode‘@=‘@, thus our macro processing
depends on whether or not the operating system
adopts the ASCII standard.

The same macro behavior is not exactly reached
in standard TEX either. We can \write a character
into a file and we can reread this character in the
next run. If we set \catcode‘^=12 before rereading
then we can conditionally continue processing based
on the “printability” attribute of this character in a
given operating system.

Conclusion

Everybody can modify the TEX source for his needs
(see the quotation from the author of TEX at the
beginning of my article). Modifying the TEX source
is simpler than it looks. In my case, I perused [1]
in the evening and reconsidered all issues. The next
morning, I implemented my ideas into a computer
and performed a couple of tests. And I wrote this
article in the afternoon (in the Czech language; the
English version took me considerably more time :-).
The goal was reached quickly thanks to the very well
documented program TEX.

References

[1] Donald Knuth. TEX: The program, volume B
of Computers & Typesetting. Addison-Wesley,
Reading, MA, USA, 1986.

[2] Petr Oľsák. The encTEX package,
ftp://math.feld.cvut.cz/pub/olsak/enctex

[3] Libor Škarvada. The patch for web2c TEX
ftp://ftp.muni.cz/pub/tex/local/cstug/
skarvada

� Petr Oľsák
Department of Mathematics
Czech Technical University
Prague, Czech Republic
olsak@math.feld.cvut.cz

TUGboat, Volume 19 (1998), No. 4 371

Appendices

Appendix 1: A part of the table of the first type il2-t1.tex.

%%% The encoding table, v.Sep.1997 (C) Petr Ol\v s\’ak
%%% input: ISO-8859-2, internal TeX: Cork

\input encmacro \input t1macro

% (1) Czech/Slovak alphabet
% input TeX lc uc sf cat prn sequence
\setcharcode "C1 "C1 "E1 "C1 999 11 1 \texaccent \’A
\setcharcode "E1 "E1 "E1 "C1 1000 11 1 \texaccent \’a
\setcharcode "C4 "C4 "E4 "C4 999 11 1 \texaccent \"A
\setcharcode "E4 "E4 "E4 "C4 1000 11 1 \texaccent \"a
\setcharcode "C8 "83 "A3 "83 999 11 1 \texaccent \v C
\setcharcode "E8 "A3 "A3 "83 1000 11 1 \texaccent \v c
...
\setcharcode "A4 "1F 0 0 0 15 0 % =o=, not accesible
\setcharcode "A7 "9F 0 0 0 12 1 \texmacro \S
\setcharcode "D7 "03 0 0 0 13 0 \expandto {\times}
\setcharcode "F7 "07 0 0 0 13 0 \expandto {\div}

Appendix 2: A list of tables of the first type.

File name input encoding internal TEX encoding

il2-csf.tex ISO8859-2 CS-font
kam-csf.tex Kamenických CS-font
1250-csf.tex CP1250, MS-Windows CS-font
852-csf.tex CP852, PC Latin2 CS-font
mac-csf.tex MAC-CZ, Macintosh CS-font
il2-t1.tex ISO8859-2 T1 alias Cork
kam-t1.tex Kamenických T1 alias Cork
1250-t1.tex CP1250, MS-Windows T1 alias Cork
852-t1.tex CP852, PC Latin2 T1 alias Cork
mac-t1.tex MAC-CZ, Macintosh T1 alias Cork

The CS-font encoding and T1 are commonly used as the internal encoding of TEX for the Czech language.
CP1250 is commonly used in MS Windows systems, ISO8859-2 in UNIX, CP852 or Kamenických encodings
are used in DOS and MAC-CZ is used in Macintosh systems.

Appendix 3: The content of the plain-il2-dc file.

\input noprefnt % re-defines \font: \font\preloaded is ignored
\input plain % format Plain
\restorefont % original meaning of primitive \font
\input dcfonts % loads text-style dc fonts
\input il2-t1 % input: ISO8859-2, internal TeX: Cork
\input hyphen.lan % czech / slovak hyphenation pattern
\input plaina4 % \hsize and \vsize for A4
\everyjob=\expandafter{\the\everyjob

\message{The format: plain-il2-dc <Sep. 1997>.}
\message{The cm+dc-fonts are preloaded and A4 size predefined.}}

\dump

