
Creating cuneiform fonts with MetaType1 and FontForge

Karel Píška
Institute of Physics of the ASCR, v. v. i.
CZ-182 21 Prague, Czech Republic
piska (at) fzu dot cz

Abstract

A cuneiform font collection covering Akkadian, Ugaritic and Old Persian glyph
subsets (about 600 signs) has been produced in two steps. With MetaType1 we
generate intermediate Type 1 fonts, and then construct OpenType fonts using
FontForge. We describe cuneiform design and the process of font development.

1 Introduction

I am interested in scripts, alphabets, writing sys-
tems, and in fonts, their computer representation.
Ten years ago I decided to create Type 1 fonts for
cuneiform, and last year, to extend them to Unicode
OpenType versions. In my older Type 1 version
(1998/9) [4] the raw text was written ‘by hand’ and
then directly compiled into Type 1 with t1asm from
t1utils [10]. The glyph set consisted of several
separate Type 1 components to cover Akkadian (ac-
cording to Labat) in a ‘Neo-Assyrian’ form (three
files), Ugaritic, and Old Persian.

Three books served as principal sources: two
Akkadian syllabaries edited by R. Labat [1] and
F. Thureau-Dangin [2], and the encyclopedia The

World’s Writing Systems [3]. No scanning of pictures
or clay tablets was performed. The fonts are based
on a starting point — my simple design of wedges in
three variant forms (see also Fig. 1, below):
������

 ¡¢£¤¥

�������

������

 ¡¢£¤¥

�������

������

 ¡¢£¤¥

�������

�������

������

 ¡¢£¤¥

�������

������

 ¡¢£¤¥

�������

������

 ¡¢£¤¥

 ¡¢£¤¥

�������

������

 ¡¢£¤¥

�������

������

�������

������

A ‘Academic’ B ‘Bold (Filled)’ C ‘Classic’

Our aim is to use free and open source software
to produce “open source fonts”. Thus, to create the
fonts only non-proprietary tools have been employed:
MetaType1; FontForge; t1utils, gawk; other stan-
dard Unix utilities such as bash, sed, sort, . . . In the
following sections we will explain the process of cre-
ating fonts and illustrate it with numerous examples.

2 Producing Type 1 with MetaType1

The MetaType1 package [6], developed by the au-
thors of Latin Modern, TEX Gyre and other font
collections (B. Jackowski, J. Nowacki, P. Strzelczyk):

• runs METAPOST (any available version) to pro-
duce eps files with outlines for all glyphs;

• collects all the data into one Type 1 file.

The information about the font and its glyphs
is described in the METAPOST source files; addi-

tional macros are defined in MetaType1 extensions
or may be appended by the user. For illustrations
see the examples below. An explanation of some
technical details and techniques how to work with
MetaType1 can be found in the tutorial written by
Klaus Höppner [7], which also includes a simple com-
plete example and Makefile.

2.1 Font description in MetaType1

As usual with METAFONT or METAPOST the compi-
lation is invoked by a main control file — naakc.mp:

input fontbase;

use_emergency_turningnumber;

input naak.mpe;

maybeinput "naakc.mpd";

maybeinput "naakc.mph";

maybeinput "naug.mph";

maybeinput "naop.mph";

beginfont

maybeinput "naak.mpg";

maybeinput "naug.mpg";

maybeinput "naop.mpg";

endfont

Global font parameters may be defined in a font
header file — naakc.mph:

% FONT INFORMATION

pf_info_familyname "NeoAssyrianClassicType1";

pf_info_weight "Medium";

pf_info_fontname "NeoAssyrianClassicType1";

pf_info_version "002.001";

pf_info_author "Karel Piska at fzu.cz 2008";

pf_info_italicangle 0;

pf_info_underline -100, 50;

pf_info_fixedpitch false;

pf_info_adl 750, 250, 0;

italic_shift:=0;

Internal glyph names and metric data can be
assigned as follows:

% INTRODUCE CHARS

standard_introduce("ash.akk");

standard_introduce("hal.akk");

standard_introduce("mug.akk");

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 421

Karel Píška

standard_introduce("zadim.akk");

standard_introduce("ba.akk");

standard_introduce("zu.akk");

.....

% METRICS

wd._ash.akk=240; ht._ash.akk=160; dp._ash.akk=0;

wd._hal.akk=340; ht._hal.akk=160; dp._hal.akk=0;

wd._mug.akk=380; ht._mug.akk=220; dp._mug.akk=0;

wd._zadim.akk=460; ht._zadim.akk=220;

dp._zadim.akk=0;

wd._ba.akk=420; ht._ba.akk=240; dp._ba.akk=0;

wd._zu.akk=500; ht._zu.akk=240; dp._zu.akk=0;

.....

(We do not define the encoding in Type 1.)

2.2 Glyph contours in MetaType1

Simple (atomic) elements — single wedges are defined
by macros:

def wh(expr l,x,y)=

r:=5; w:=40; b:=5; c:=20; d:=70;

z[nw] 0=(x+l,y+r);

z[nw] 0a=(x+d,y+r); z[nw] 1b=(x+d,y+r);

z[nw] 1=(x,y+w);

z[nw] 1a=(x+b,y+c); z[nw] 2b=(x+b,y-c);

z[nw] 2=(x,y-w);

z[nw] 2a=(x+d,y-r); z[nw] 3b=(x+d,y-r);

z[nw] 3=(x+l,y-r);

p[nw]=compose_path.z[nw](3);

Fill p[nw];

nw:=nw+1;

enddef;

�������

������

Another definition of a wedge — a single path:

def pwh(expr l,x,y)=

(x+l,y+r)..controls(x+d,y+r)..(x,y+w)

..controls(x+b,y+c)and(x+b,y-c)..(x,y-w)

..controls(x+d,y-r)..(x+l,y-r)--cycle;

enddef;

In compound elements, the rendering of inter-
secting areas may depend on printer/viewer. There-
fore, removing overlap in Type 1 (and probably
also in OpenType) is required. We use the macro
find_outlines:

�������

������

 ¡¢£¤¥

�������

������

 ¡¢£¤¥

�������

������

�������

������

def whv(expr x,y)=

save pa,pb,pc; path pa,pb,pc;

r:=5; w:=40; b:=5; c:=20; d:=70;

pa:=pwh(200,x,y); pb=pwv(200,x+80,y+100);

find_outlines(pa,pb)(pc);

p[nw]:=pc1;

Fill p[nw];

nw:=nw+1;

enddef;

Complete glyphs — that is, cuneiform signs —
are demonstrated in the following examples. Hori-
zontal/vertical wedges, composites or their groups
are also defined by macros; the arguments, for exam-
ple, denote their lengths and coordinates.

beginglyph(_mash.akk);

save p; path p[]; nw:=0;

whv(0,120);

standard_exact_hsbw("mash.akk");

endglyph;

beginglyph(_sag.akk);

save p; path p[]; nw:=0;

wh(240,0,160);

wh(160,80,80);

wv(240,220,240);

wv(240,300,240);

whhv(400,120);

standard_exact_hsbw("sag.akk");

endglyph;

2.3 Generating Type 1

An intermediate Type 1 is generated from scratch:

FN=$1 # font file name

MT1=$2 # MetaType1 direction

mpost ’\generating:=0;’ input $FN.mp

gawk -f $(MT1)/mp2pf.awk \

-v CD=$(MT1)/pfcommon.dat -v NAME=$FN

gawk -f $(MT1)/packsubr.awk -v LEV=5 \

-v OUP=$FN.pn $FN.p

t1asm -b $FN.pn $FN.pfb

with some simplifications (intentional for cuneiform):
glyph design is simple; no kerning pairs are needed;
the characters occupy independent boxes; no hyphen-
ation; and no internal encoding in the intermediate
Type 1 is defined. Theoretically, we could use a
common Type 1 with several external encoding vec-
tors, but in practice, joining all the glyphs into one
OpenType font is a better and simpler solution.

3 FontForge and producing OpenType

Scripts in the FontForge scripting language read
Type 1, build data for OpenType (especially, define
the encoding) and then generate OTF and TTF files.
Here is a table showing the Unicode areas with which
we are concerned:

422 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

Creating cuneiform fonts with MetaType1 and FontForge

Definition of encoding (Unicode)
Plane 0

U+0020–U+007F ASCII block
Plane 1

Cuneiform ranges “Standard” Unicode
U+10380–U+1039F Ugaritic
U+103A0–U+103D7 Old Persian
U+12000–U+123FF Cuneiform signs
U+12500–U+1277F Neo-Assyrian glyph container

(temporary “Private Area”)

To begin, we introduce a new Unicode font:

#!/usr/bin/fontforge

1.sfd, 2.names, 3.pfb, 4.otf, 5.ttf

New();Reencode("UnicodeFull")

SetFontNames($2,$2,$2)

#SetFontOrder(3); # cubic

#SetFontOrder(2); # quadratic

ScaleToEm(250)

Save($1)

...

Then we copy glyphs from Type 1 to OpenType:
we open and read a Type 1 font and access glyphs
by name (in Type 1) and copy them to appropriate
locations addressed by Unicode numbers:

Open($3);Select("ash.akk");Copy();Close();\

Open($1);Select("u12501");Paste();

Save($1);Close();

Open($3);Select("hal.akk");Copy();Close();\

Open($1);Select("u12502");Paste();

Save($1);Close();

Open($3);Select("mug.akk");Copy();Close();\

Open($1);Select("u12503");Paste();

Save($1);Close();

...

A FontForge user command eliminates the repetition:

#!/usr/bin/fontforge # copy.pe

SF source font, SG source glyph

DF destination font, DG dest. glyph

Open($1);Select($2);Copy();Close();

Open($3);Select($4);Paste();

Save($3);

with references for the Neo-Assyrian block:

$SF is source font

$SFD temporary font (internal)

./copy.pe $SF "ash.akk" $SFD u12501

./copy.pe $SF "hal.akk" $SFD u12502

./copy.pe $SF "mug.akk" $SFD u12503

...

The Neo-Assyrian glyphs are allocated in the
container; existing glyphs are linked from the Cunei-
form range by references:

Select("u12743");CopyReference();

Select("u12000");Paste();

Select("u1264E");CopyReference();

Select("u12009");Paste();

Select("u12580");CopyReference();

Select("u1200A");Paste();

...

This operation may also be executed using a
FontForge routine:

#!/usr/bin/fontforge # addref.pe

1. font, 2. glyph point in container

3. reference point

addref.pe $fontname.sfd u12743 u12000

Open($1);Select($2);CopyReference();

Select($3);Paste();Save($1);

and then:

addref.pe $FN u12743 u12000

addref.pe $FN u1264E u12009

addref.pe $FN u12580 u1200A

...

Generating OpenType itself completes step 2:
we can generate both OTF and TTF.

$4 is OTF, $5 is TTF

Open($1);Generate($4); # with options

Open($1);Generate($5); # with options

Unfortunately, the glyph repertoire does not
correspond to Unicode because, first, more than 300
glyphs do not have Unicode code points, and, on
the other hand, my fonts cover only about 20% of
the Unicode Sumerian-Akkadian cuneiform range
(cuneiform signs and numeric signs).

In the final OpenType fonts, PostScript glyph
names are omitted, the Akkadian glyph container
(OTF/a) contains all Neo-Assyrian glyphs (according
to Labat), partly defined by references in Unicode
cuneiform block (OTF/c). Here is a table showing
some of the correspondences:

PostScript OTF/a OTF/c

ash.akk 12501 u12038
hal.akk 12502 u1212C
mug.akk 12503 u1222E
zadim.akk 12504
ba.akk 12505 u12040
zu.akk 12506 u1236A
su.akk 12507 u122E2
shun.akk 12508
bal.akk 12509 u12044
adII.akk 1250A
bulII.akk 1250B
tar.akk 1250C u122FB
an.akk 1250D u1202D
ka.akk 1250F u12157

3.1 Hinting

The OpenType output was “satisfactory” as auto-
hinted with FontForge (Fig. 1); no hinting instruc-
tions are included in the TrueType fonts.

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 423

Karel Píška

Figure 1: Wedge design in three variants with
hinting.

4 Support for (pdf)LATEX and X ETEX

Old and simple LATEX macros for Type 1 fonts and
(pdf)LATEX were modified for X ELATEX to bind sym-
bolic glyph names using their Unicode numbers.

\def\NAfontC#1{% xakkadian.sty

\font\NAC="[nacunc.ttf]" at #1pt

}

\def\NAfont{\NAfontC{10}} % default font

%

\def\AKK{%

\NAfont%

\def\ash{{\NAC\char"12501}}%

\let\dil\ash\let\tilIIII\ash\let\ttil\ash%

\let\rum\ash\let\ruIII\ash\let\ina\ash%

\let\asIII\ash\let\azIII\ash%

\def\hal{{\NAC\char"12502}}\let\buluh\hal%

\def\mug{{\NAC\char"12503}}%

\let\muk\mug\let\muq\mug\let\puk\mug%

\def\zadim{{\NAC\char"12504}}%

\def\ba{{\NAC\char"12505}}%

\let\paII\ba%

\def\zu{{\NAC\char"12506}}%

\let\ssuII\zu%

...

The two following examples show font usage.

1. Glyph index, numbers correspond to Labat [1]:

a a a: 579/1 (579-NAc67)

a’ � aI: 397 (397-NAb141)

á N aII: 334 (334-NAb78)

à π aIII: 383 (383-NAb127) see pi

a4 F aIIII: 579/2 (582-NAc70) see àm

a7 M aVII: 589 (589-NAc77) see h
˘
a

aa K aa: 579/6 (587-NAc75)

ab � ab: 128 (128-NAa128)

áb ¤ abII: 420 (420-NAb164) see lid

ablal ablal: 525 (525-NAc13)

ad � ad: 145 (145-NAa145)

ád
 adII: 10 (10-NAa10)

a

2. Sample text in Akkadian (with transliteration):

aFnνFaæ>V[7�aV]
\a\na \kur\nu\giIIII \a \qaq\qa\ri [\ \la \ta\a\ri \]

a.na kur.nu.gi4 a qaq.qa.ri [la ta.a.ri]

g�*ȓ>�8U [ÔM]
\DETd\innana\dumu\miII \DETd\sin \uII\zu\un\shaII \ [\ \ish\kun\]
dinnana.dumu.mí dsin ú.zu.un.šá [iš.kun]

ÔMV�*ȓ>�8[ш]
\ish\kun\ma \dumu\miII \DETd\sin \uII\zu\un[\sha]

iš.kun.ma dumu.mí dsin ú.zu.un.[ša]

aFDeÉebEèB7

\a\na \eII \e\tte\e \shu\bat \DETd\ir\kal\la

a.na é e.t.e.e šu.bat dir.kal.la

aFDшeVs!7a+>

\a\na \eII \sha \e\ri\bu\shuII \la \a\ssu\uII

a.na é ša e.ri.bu.šú la a.s.u.ú.

aF�Hçшa:�U7�aaS

\a\na \har\ra\ni \sha \a\lak\ta\shaII \la \ta\a\a\rat

a.na h
˘
ar.ra.ni ša a.lak.ta.šá la ta.a.a.rat

aFDшeVs!��µ>ν>H

\a\na \eII \sha \e\ri\bu\shuII \zu\um\mu\uII \nu\uII\ra

a.na é ša e.ri.bu.šú zu.um.mu.ú nu.ú.ra

a�Ô�sst�νaBbνÉN

\a\shar \sahar\haII \bu\bu\us\su\nu \a\kal\shu\nu \tti\itt\ttu

a.šar sah
˘
ar.h

˘
á bu.bu.us.su.nu a.kal.šu.nu t.i.it..t.u

Line 1: Akkadian text using the cuneiform font

Line 2: The corresponding source input in the LATEX command {\AKK source }

Line 3: Transliteration (dots and spaces added manually)

5 Conclusion

Both METAFONT and MetaType1 (=METAPOST)
are programmable. But METAFONT produces only
bitmaps, while in MetaType1, we must not define
areas to fill or unfill with bitmap matrices which
would depend on the device (resolution, blacker and
other parameters). Rather, we are restricted to out-
lines:

• glyphs must be defined by closed curves, i.e.
sequences of splines;

• we produce the Type 1 format directly;

• the MetaType1 commands Fill/Unfill denote
the output of curves in the PostScript Type 1

424 TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting

Creating cuneiform fonts with MetaType1 and FontForge

representation with proper path direction and
correct order of spline segments;
• final filling/unfilling is delegated to the Post-

Script/PDF rasterization systems.

Between PFB (Type 1) and OTF (PS/CFF fla-
vored OpenType) we can find only formal differences
in internal representation and organization; the math-
ematical outline curves and hints are identical. On
the other hand, OTF and TTF (TrueType flavored
OpenType) may differ in approximation of curve
segments, since the underlying representations use
cubic and quadratic polynomials, respectively. For
our simple cuneiform design of wedges, though, a
common approximation is workable. X ELATEX can
read all font formats: TEX fonts, OTF, TTF, etc.;
OpenOffice 2.3 (on my computer) can work only with
TTF. (I can say nothing about MS Word because I
do not have this product.)

MetaType1 and FontForge give the advantage
of programmability with open source data. In Font-
Forge, the interactive approach in glyph design is
dominant; theoretically we could define glyph out-
lines in the FontForge scripting language but it would
be very difficult and inefficient. METAFONT/META-
POST (MetaType1) are more flexible and modular:
they allow for solving mathematical equations, com-
mon processing and maintenance of related fonts,
automatic calculation of parameters, and systematic
modifications.

A typical task for MetaType1 is to combine a
small number of components into many composite
glyphs uniformly. This is common for “special kinds
of fonts”: just as Latin Modern and TEX Gyre can
combine letters + accents, the cuneiform fonts can
combine wedges; operations to produce composite
glyphs can be defined and applied in a simple way,
and generation and maintenance can be repeated for
numerous fonts.

The older non-Unicode versions of cuneiform
fonts have been already referenced in the subsection
“External links / Fonts” in http://en.wikipedia.

org/wiki/Cuneiform_script (a web search for “cu-
neiform” should find it also). They have been already
used by scholars; e.g. for syllabaries and computer
transliteration of sample texts for students.

Now I plan to finish and publish the new “Uni-
code” version, by extending the glyph repertoire
to other glyphs and other shapes, corresponding to
other languages and their historical period. Prelimi-
nary experimental OpenType fonts are available on
my web site [11].

My final wish is that the MetaType1 package
would be extended to “MetaOpenType” to produce
OpenType font formats directly.

6 Acknowledgements

I want to thank the authors of MetaType1, FontForge
(G. Williams) and other developers and maintainers
of free and open source software.

References

[1] René Labat. Manuel d’épigraphie akkadienne.
Troisième édition. Imprimerie nationale, Paris,
1959.

[2] F. Thureau-Dangin. Le syllabaire accadien.
Librairie Orientaliste Paul Geuthner, Paris,
1926.

[3] The World’s Writing Systems. P. T. Daniels
and W. Bright, eds. Oxford University Press,
New York–Oxford, 1996.

[4] Karel Píška. Fonts for Neo-Assyrian
Cuneiform. Proceedings of the EuroTEX
Conference (Paperless TEX), Heidelberg,
Germany, September 20–24, 1999, Günter
Partosch and Gerhard Wilhelms, eds. Gießen,
Augsburg, 1999, ISSN 1438-9959, 142–154.
http://www-hep.fzu.cz/~piska/cuneiform.

html

[5] Cuneiform script (Wikipedia). http://en.

wikipedia.org/wiki/Cuneiform_script

[6] Bogusław Jackowski, Janusz M. Nowacki,
Piotr Strzelczyk. Programming PostScript
Type 1 fonts using MetaType1: Auditing,
enhancing, creating. Proceedings of EuroTEX
2003, Brest, France, 24–27 June 2003.
TUGboat 24:3, pp. 575–581, http://tug.org/

TUGboat/Articles/tb24-3/jackowski.pdf;
CTAN:fonts/utilities/metatype1;
ftp://bop.eps.gda.pl/pub/metatype1.

[7] Klaus Höppner. Creation of a PostScript
Type 1 logo font with MetaType1. Proceedings
of XVII European TEX Conference, 2007.
TUGboat 29:1, pp. 34–38, http://tug.org/

TUGboat/Articles/tb29-1/tb91hoeppner.

pdf.

[8] George Williams. Font creation with
FontForge. EuroTEX 2003 Proceedings,
TUGboat 24:3, pp. 531–544, http://tug.org/

TUGboat/Articles/tb24-3/williams.pdf;
http://fontforge.sourceforge.net.

[9] Free Software Foundation. GNU awk,
http://www.gnu.org/software/gawk.

[10] Eddie Kohler. t1utils (Type 1 tools),
http://freshmeat.net/projects/t1utils.

[11] http://www-hep.fzu.cz/~piska/cuneiform/

opentype.html

TUGboat, Volume 29 (2008), No. 3 — Proceedings of the 2008 Annual Meeting 425

