
The design of the HINT file format

Martin Ruckert

Abstract

The HINT file format is intended as a replacement
of the DVI or PDF file format for on-screen reading
of TEX output. Its design should therefore meet the
following requirements: reflow of text to fill a win-
dow of variable size, convenient navigating of text
with links in addition to paging forward and back-
ward, efficient rendering on mobile devices, simple
generation from existing TEX input files, and an ex-
act match of traditional TEX output if the window
size matches TEX’s paper size.

This paper describes the key elements of the
design and motivates the design decisions.

Why do we need a new file format?

The first true output file format for TEX was the DVI

format [3]. When PostScript became available, it
was soon supplemented by dvips [7], and now, most
people I know use pdftex to produce TEX output in
PDF format. There are two good reasons for that:
partly, the PDF format is a near-perfect match [4]
for the demands of the TEX typesetting engine, but
first and foremost, the PDF format is in widespread
use. It enables us to send documents produced with
TEX to practically anybody around the globe and
be sure that the receiver will be able to open the
document and that it will print exactly as intended
by its author (unless a font is neither embedded in
the file nor available on the target device) .

But the main limitation of the PDF format is
its inherent inability to adapt to the given window
size. For reading documents on mobile devices, the
HTML format is a much more convenient format.
Part of the concept of HTML is a separation of con-
tent and presentation: the author prepares the con-
tent, the browser decides on the presentation — at
least in principle. It turns out that designers of web
pages spare no effort to control the presentation, but
often the results are poor. Different browsers have
different ideas about presentation, users’ preferences
and operating systems interfere with font selection,
and all that might conflict with the presentation the
author had in mind.

When it comes to ebooks, the popular epub for-
mat [2] is derived from HTML and inherits its advan-
tages as well as its shortcomings. As a consequence,
ebooks when compared with printed books are often
of inferior quality.

TUGboat, Volume 40 (2019), No. 2 143

What is needed is a document format which
meets the demands of the TEX typesetting engine
and that gives the author as much control over the
presentation as possible but still can adapt to a given
paper format — be it real or electronic paper. Build-
ing on previous work [8, 9], these two design objec-
tives guided the development of the HINT file format.

While the TEX typesetting engine, its internal
representation of data, its algorithms, and its de-
bugging output, was the driving force of the devel-
opment of the HINT file format, giving the whole
project its name (the recursive acronym for “HINT

Is Not TEX”), the result is not limited to the TEX
universe. In the contrary, it makes the best parts of
TEX available to any system that uses the HINT file
format.

Faithful recording of TEX output

At the beginning of the design, the primary necessity
was the ability to faithfully capture the output of the
TEX typesetting engine.

To build pages, TEX adds nodes to the so-called
“contribution list”. The content of a HINT file is ba-
sically a list of all these nodes, from which a viewer
can reconstruct the contributions and build pages
using TEX’s original algorithms. So with few excep-
tions, TEX nodes are matched one-to-one by HINT

nodes.
Of course, we need characters, ligatures, kerns,

rules, hlists and vlists; and as in TEX, dimensions
are expressed as scaled points. But even a sim-
ple and common construction like \hbox to \hsize

{. . . } requires new types of nodes: this is a hori-
zontal list that may contain glue nodes and has a
width that depends on \hsize which is not known
when the HINT file is generated. To express di-
mensions that depend on \hsize and \vsize, HINT

uses linear functions w + h · \hsize + v · \vsize,
called extended dimensions. Linear functions are a
good compromise between expressiveness and sim-
plicity. The computations that most TEX programs
perform with \hsize and \vsize are linear and in
the viewer, where \hsize and \vsize are finally
known, extended dimensions are easily converted
to ordinary dimensions. Necessarily, HINT adopts
TEX’s concepts of stretchability, shrinkability, glue,
and leaders.

One of the highlights of TEX is its line breaking
algorithm. And because line breaking depends on
\hsize, it must be performed in the viewer. But
wait — an expensive part of line breaking is hyphen-
ation and this can be done without knowledge of
\hsize. So HINT defines a paragraph node, its width

The design of the HINT file format



is an extended dimension, and all the words in it con-
tain all possible hyphenation points in the form of
TEX’s discretionary hyphens. To maintain complete
compatibility between TEX and HINT, two types of
hyphenation points had to be introduced: explicit
and automatic. TEX uses a three pass approach for
breaking lines: In the first pass, TEX does not at-
tempt automatic hyphenation and uses only discre-
tionary hyphens provided by the author. Likewise
HINT will use in its first pass only the explicit hy-
phenation points. Given the same value of \hsize,
TEX and HINT will produce exactly the same line
breaks. In a paragraph node, HINT also allows vad-
just nodes and a new node type for displayed for-
mulas to make sure that the positioning of displayed
equations and their equation numbers is exactly as
in TEX.

The present HINT format also has an experi-
mental image node that can stretch and shrink like
a glue node. Therefore, images stretch or shrink to-
gether with the surrounding glue to fill the enclosing
box. The insertion of images in TEX documents is
common practice. But TEX treats images as “exten-
sions” that are not standardized. In a final version
of HINT, I expect to have a more general media node.
I think it is better to have a clearly defined, limited
set of media types that is supported in all imple-
mentations than a wide variation of types with only
partial support.

One node type of TEX that is not present in
HINT is the mark node. TEX’s mark nodes contain
token lists, the “machine code” for the TEX inter-
preter, and for reasons explained next, HINT does
not implement token lists.

Efficient and reliable rendering

On mobile devices, rendering must be efficient and
files must be self-contained. To meet these goals,
the proper foundation is laid in the design of the file
format.

The most important decision was to ban the
TEX interpreter from the rendering application. A
HINT file is pure data. As a consequence, TEX’s out-
put routines (and with them mark nodes) were re-
placed by a template mechanism. Templates, while
not as powerful as programs, will always terminate
and can be processed efficiently. Whether they offer
sufficient flexibility remains to be seen. It is a fact,
however, that very few users of TEX or LATEX write
their own output routines. So it can be expected
that a collection of good templates will serve most
authors well.

144 TUGboat, Volume 40 (2019), No. 2

The current template mechanism of HINT is still
experimental. It is sufficient to replace the output
routines of plain TEX and LATEX.

HINT files contain all necessary resources, no-
tably fonts and images, making them completely
self-contained. Embedding fonts makes HINT files
larger — the effect is more pronounced for short texts
and less significant for large books — but it makes
HINT files independent of local resources and of lo-
cal character encodings. Indeed, a HINT file does not
encode characters, it encodes glyphs. While HINT

files use the UTF-8 encoding scheme, it is possible
to assign arbitrary numbers to the glyphs as long
as the assignment in the font matches the assign-
ment in the text. The only reason not to depart
from the standard UTF-8 encoding is to maximize
compatibility with other software, e.g., to search for
user-entered strings or for text to speech translation.

Zoom and size changes

On mobile devices it is quite common to switch
within one application between landscape or por-
trait mode to use the screen space as efficiently as
possible. Further, users usually can adjust the size
of displayed content by zooming in or out.

For rendering a HINT file, these operations sim-
ply translate into a change of hsize and vsize,
with consequences for line and page breaking. While
changing line breaks affects only individual para-
graphs, changing a page break has global implica-
tions, making precomputing page breaks impracti-
cal. Consequently, the HINT file format must sup-
port rendering either the next page or the previous
page based solely on the top or bottom position of
the current page. In turn, this implies that it must
be possible to parse the content of a HINT file in
both forward and backward directions.

A HINT file encodes TEX’s contribution list in
its content section. To support bidirectional pars-
ing, each encoding of a node starts with a tag byte
and ends with that same tag byte. From the tag
byte, the layout of the encoding can be derived. So
decoding in the backward direction is as simple as
decoding in the forward direction.

Changes in TEX’s parameters, for example para-
graph indentation or baseline spacing, pose another
problem for bidirectional parsing. HINT solves this
problem by using a stateless encoding of content. All
parameters are assigned a permanent default value.
To specify these defaults, HINT files have a definition
section. Any content node that needs a deviation
from the default values must specify the new val-
ues locally. To make local changes efficient, nodes

Martin Ruckert



in the content section can reference suitable prede-
fined lists of parameter values specified again in the
definition section, described next.

Simple and compact representation

At the top level, a HINT file is a sequence of sec-
tions. To locate each section in the file, the first
section of a HINT file is the directory section: a se-
quence of entries which specify the location and size
of each section. The first entry in the directory sec-
tion, the root entry, describes the directory section
itself. The HINT file format supports compressed
sections according to the zlib specification [1]. Us-
ing the directory, access to any section is possible
without reading the entire file.

The directory section is preceded by a banner
line: It starts with the four byte word hint and the
version number; it ends with a line-feed character.
The directory section is followed by two mandatory
sections: the definition section and the content sec-
tion. All further sections, containing fonts, images,
or any other data, are optional. The size of a sec-
tion must be less than or equal to 232 bytes. This
restriction is strictly necessary only for the content
section. It sets a limit of about 500 000 pages and
ensures that positions inside the content section can
be expressed as 32-bit numbers.

For debugging, the specification of a HINT file
also describes a “long” file format. This long file
format is a pure ASCII format designed to be as
readable as possible. Two programs, stretch and
shrink, convert the short format to the long for-
mat and back. They are literate programs [5], and
constitute the format specification [10].

Since large parts of a typical content section
contain mostly character sequences, there is a spe-
cial node type, called a text node, optimized for the
representation of plain text. It breaks with two con-
ventions that otherwise are true for any other node:
The content of a text node cannot be parsed in the
backward direction, and it depends on a state vari-
able, the current font. To mitigate the requirement
for forward parsing, the size of a text node is stored
right before the final tag byte. This enables a parser
to move from the final tag byte directly to the be-
ginning of the text. Since text nodes cannot span
multiple paragraphs, they are usually short.

Inside a text node, all UTF-8 codes in the range
25 + 1 to 220 encode a character in the current font;
codes from 0x00 to 0x20 and 0xF8 to 0xFF are used
as control codes. Some of these are reserved as
shorthand notation for frequent nodes. For exam-
ple, the space character 0x20 encodes the interword

TUGboat, Volume 40 (2019), No. 2 145

glue, and others introduce font changes or mark the
start of a node given in its regular encoding.

The two forms of content encoding, as regular
nodes or inside a text node, introduce a new require-
ment: when decoding starts at a given position, it
must be possible to decide whether to decode a reg-
ular node, a UTF-8 code, or a control code. Control
codes have only a limited range and the values of
tag bytes can be chosen to avoid that range. Con-
flicts between UTF-8 codes and tag bytes cannot be
avoided, hence positions inside text nodes are re-
stricted to control codes. A position of an arbitrary
character inside a text node can still be encoded be-
cause there is a control code to encode characters
(with a small overhead).

Clear syntax and semantics

Today, there are many good formal methods to spec-
ify a file format, and the time when file formats were
implicit in the programs that would read or write
these files seems like ancient history. The specifi-
cation of the HINT file format, however, is given as
two literate programs: stretch and shrink. The
first reads a HINT file and translates it to the “long”
format and the second goes the opposite direction
and writes a HINT file.

Of course, these programs use modern means
such as regular expressions and grammar rules to
describe input and output and are, to a large extent,
generated from the formal description using lex and
yacc. For this purpose, the cweb system [6] for lit-
erate programming had to be extended to generate
and typeset lex and yacc files. I consider this rep-
resentation an experiment. I tried to combine the
advantages of a formal syntax specification with the
less formal exposition of programs that illustrate the
reading and writing process and can serve as refer-
ence implementations. The programs stretch and
shrink can also be used to verify that HINT files
conform to the format specification.

Specifying semantics is a difficult task and a
formal specification is entirely impossible if the cor-
rectness depends partly on personal taste. Fortu-
nately the new file format is just an “intermediate”
format as part of the TEX universe. So the follow-
ing commutative diagram is an approximation to a
formal specification.

The design of the HINT file format



The programs HiTEX and HINTcl mentioned in
the diagram are currently in development. HiTEX
is a modified version of TEX that produces HINT

files as output; HINTcl is a command line program
which reproduces TEX’s page descriptions as if the
parameter \tracingoutput were enabled. While it
does not actually produce a DVI file, its output can
be compared to the page descriptions in TEX’s .log
file to make sure the diagram above would indeed
be commutative. The prototypes available so far do
not yet support all the features of TEX or HINT.

Conclusion

The experimental HINT file format proves that file
formats supporting efficient, high quality rendering
of TEX output on electronic paper of variable size
are possible. The upcoming prototypes for a TEX
version (HiTEX) that produces such files and viewer
programs on Windows and Android will provide a
test environment to investigate and improve con-
cepts and performance in practice.

In the long run, I hope that a new standard for
electronic documents will emerge that enjoys wide-
spread use, has the output quality of real books,
is easy to use and powerful enough to encode TEX
output, offers the author maximum control over the
presentation of her or his work, and can cope with
the variations in screen size and screen resolution of
modern mobile devices.

146 TUGboat, Volume 40 (2019), No. 2

References

[1] P. Deutsch and J.-L. Gailly. Zlib compressed data
format specification version 3.3. Technical report,
RFC Editor, 1996.
tools.ietf.org/html/rfc1950

[2] EPUB 3 Community Group. epub 3.
w3.org/publishing/groups/epub3-cg

[3] D. Fuchs. The format of TEX’s DVI files.
TUGboat 3(2):14–19, Oct. 1982.
tug.org/TUGboat/tb03-2/tb06software.pdf

[4] H. Hagen. Beyond the bounds of paper and
within the bounds of screens; the perfect match
of TEX and Acrobat. In Proceedings of the
Ninth European TEX Conference, vol. 15a of
MAPS, pp. 181–196. Elsevier Science, Sept. 1995.
ntg.nl/maps/15a/09.pdf

[5] D. E. Knuth. Literate Programming. CSLI
Lecture Notes Number 27. Center for the Study
of Language and Information, Stanford, CA, 1992.

[6] D. E. Knuth and S. Levy. The CWEB System of
Structured Documentation. Addison Wesley, 1994.
ctan.org/pkg/cweb

[7] T. Rokicki. Dvips: A DVI-to-PostScript
translator. tug.org/dvips

[8] M. Ruckert. Computer Modern Roman fonts
for ebooks. TUGboat 37(3):277–280, 2017.
tug.org/TUGboat/tb37-3/tb117ruckert.pdf

[9] M. Ruckert. HINT: Reflowing TEX output.
TUGboat 39(3):217–223, 2019. tug.org/TUGboat/

tb39-3/tb123ruckert-hint.pdf

[10] M. Ruckert. HINT: The File Format. Aug. 2019.
ISBN 978-1079481594.

� Martin Ruckert
Hochschule München
Lothstrasse 64
80336 München
Germany
ruckert (at) cs dot hm dot edu

Martin Ruckert


