
TUGboat, Volume 41 (2020), No. 2 215

Why the LATEX community should care
about SGML

William F. Hammond

Abstract

Given that the universal format-to-format translator
Pandoc is coming of age, LATEX authors are tempted
to think that whatever LATEX they write can quickly
be translated without worry to whatever other format
may be required.

Of course, that is not exactly true, but the use
of an XML profile of LATEX can make it exactly true.
However, an SGML profile of LATEX can provide closer
emulation of classical LATEX than an XML profile.

Most actors in the world of markup have re-
stricted their use of SGML to XML. For that reason
software that handles SGML beyond the realm of
XML seems to be falling out of maintenance. If
the LATEX community wishes to continue to be able
to avail itself of the advantages of SGML for LATEX
source emulation, it may fall on the LATEX community
to maintain the extant SGML libraries.

1 Maximally useful source markup

Authors spend a great deal of time writing their
articles and reports. Because of that investment
of time it is important that tools used in writing
are chosen carefully. One wants the fruit of one’s
writing to be presentable not only on the printed
page but also on screens of various sizes from mobile
telephones to full-wall monitors. It is better to write
once and then use robust processing streams for the
desired output formats rather than to edit manually
for each output. Within the realm of TEX-like source,
the best results flow from profiled LATEX.

1.1 The concept of LATEX Profiles

A LATEX profile is a dialect of LATEX with a fixed
command vocabulary, where all macro expansions
must be effective in that vocabulary, having dual
existence under an SGML [4] document type with
a canonical XML [2] shadow. I spoke about this
concept in my talk [7] on the 1000002-th (i.e., 32nd)
anniversary of TUG in 2010.

While an instance of a LATEX profile may be
written directly as SGML or XML using the regular
syntax, it is envisioned that one would want to use
generalized LATEX, i.e., write using the syntax of
LATEX.

The XML guise of a LATEX profile can be styled,
though with less than perfection, using CSS [1]. See
my talk [8] at TUG 2014. This is not a new idea

except insofar as it involves CSS-only rendering of
most of LATEX math.

My GELLMU Project, found at my university
website, albany.edu/~hammond/gellmu, as well at
CTAN (ctan.org/pkg/gellmu) provides a didactic
model for the use of a LATEX profile.

1.2 A side remark on accessibility

In reference to the first of Ross Moore’s talks at this
meeting, I want to suggest that HTML 5 [3], with
Unicode text and MathML for math, obtained from
a LATEX profile can rather easily be made accessible
for those with vision impairment.

2 Why SGML rather than XML?

The simple answer is that SGML provides better
emulation of classical LATEX than XML in that XML

requires markup elements to have tags for both start
and end, whereas with SGML it is commonly possible
to omit an end tag and less commonly possible to
omit a start tag and sometimes both. This is not the
place to rehearse the conditions under which these
tag omissions are allowed. The point is that classical
LATEX may be viewed as allowing many tag omissions,
and for that reason one may construct approximate
SGML models that are closer to classical LATEX than
any XML model can be.

One aspect of the overall idea of generalized
LATEX is that the processing should proceed through
a pipeline with well-defined stages, and the first
stage of that processing should involve only syntax.
Thus, for a particular LATEX markup structure, a
human may see how to use code to reformulate it
directly under an XML document type, but that
formulation might require knowledge of both classical
LATEX vocabulary and the vocabulary of the XML

document type.

3 Example: A simple table

There follows a mundane example of a centered table
that would normally be created in LATEX using a
tabular environment inside a center environment.

long phrase five shorter
shorter long phrase five

The pattern of horizontal alignment in the cells of this
table is “rcr”, which in LATEX is normally furnished
as an argument of the tabular environment. This
table has two rows, each with three cells. The rows
have horizontal borders and the cells have vertical
borders.

In the GELLMU Didactic Production System
this centered table can be marked up with

Why the LATEX community should care about SGML

https://tug.org/tugboat/tb31-2/tb98hammond.pdf
https://tug.org/TUGboat/tb35-2/tb110hammond.pdf
https://albany.edu/~hammond/gellmu
https://ctan.org/pkg/gellmu


216 TUGboat, Volume 41 (2020), No. 2

\begin{display}

\begin{tabular}{|r|c|r|}

\hline

long phrase & five & shorter \\

\hline

shorter & long phrase & five \\

\hline

\end{tabular}

\end{display}

One probably wants the cell separators (“&”) to
be viewed as tags for cells and the row separators
(“\\”) to be viewed as tags for rows.

The question here is not how to mark up a table
in some corresponding XML but how to formulate
XML markup that models this LATEX construction.
Where do the hline-s belong in that model? If only
because the question about the hline-s requires some
thought, the translation from this generalized LATEX
to an XML model cannot be just a matter of syntax.

But with a few syntactic conventions, includ-
ing the recognition of argument syntax on the tab-
ular environment to generate a generic “argument”
“<ag0>”, flagging the \\ as a generic “breaking” ele-
ment “<brk0>”, and recognizing the special syntactic
role played in LATEX by the character “&” leading to
the element “tabampcell”, one arrives in a straight-
forward fashion at this segment of SGML:

<display>

<tabular><ag0><vbr/>r<vbr

/>c<vbr/>r<vbr/></ag0>

<hline>

long phrase

<tabampcell>five

<tabampcell>shorter<brk0>

<hline>

shorter

<tabampcell>long phrase

<tabampcell>five<brk0>

<hline>

</tabular>

</display>

(In this example “<vbr/>” is an empty ele-
ment representing the special character “|”. In the
GELLMU Didactic Production System all 33 of the
printable non-alphanumeric ASCII characters have
representation as empty elements with three-letter
names. There are various context-dependent ways
that any of these characters can be special after a
format translation. Naming them makes it possible
for last processing minute decisions to be made. On
the other hand, use of the names is quite often op-
tional in generalized LATEX markup source, as here

with “|”, so long as emulation of TEX’s manmac is
not being engaged.)

At the next stage of processing — under an
SGML transformation — using code with knowledge
of markup vocabulary at both ends, the SGML seg-
ment above is transformed to the following XML

segment:

<display>

<tabular>

<tabuhead>

<tabharg><vbr/>r<vbr/>c<vbr

/>r<vbr/></tabharg>

<hline/>

</tabuhead>

<tabubody>

<taburow>

<firstcell>long phrase</firstcell>

<tabampcell>five</tabampcell>

<tabampcell>shorter</tabampcell>

</taburow>

<taburow>

<firstcell><hline/>shorter</firstcell>

<tabampcell>long phrase</tabampcell>

<tabampcell>five</tabampcell>

</taburow>

<taburow>

<firstcell><hline/></firstcell>

</taburow>

</tabubody>

</tabular>

</display>

4 SGML, LATEX, decline, and authors

Like XML, SGML is a grammar for markup languages.
XML has stricter rules than SGML. While formally
SGML and XML have disjoint specifications, it is
nonetheless the case that any XML document type
admitting a “DTD” definition may be realized in a
routine way as an SGML document type. In the other
direction, most SGML document types admit an
SGML normalization that can usually be transformed
to an XML document type.1

4.1 Why XML now dominates SGML

One of the complications with SGML that led to the
rise of XML is that an SGML document very rarely
exists as a stand-alone file. An SGML document must
always include or reference a formal document type
definition and be associated, explicitly or implicitly,
with an on-board SGML declaration. As a practical

1 But, for example, there might be a challenge in this
direction with an instance of an SGML document type that
makes extensive use of SDATA.

William F. Hammond



TUGboat, Volume 41 (2020), No. 2 217

matter an SGML user must have a collection of aux-
iliary documents just as a LATEX user must have a
collection of packages. While this can be practical for
sharing among a group of authors, it makes sharing
an SGML document across the web more difficult
and less efficient than sharing an XML document.

SGML documents that are not XML have effec-
tively vanished from the web.2 The fact that any new
SGML documents being generated are behind closed
doors, together with a somewhat steeper learning
curve for SGML than for XML, seems to have led to
a loss of interest in SGML beyond XML.

4.2 Who the authors are

How do SGML and XML documents arise?
I believe most of the books and articles written

by actual authors, whether for academic publication
or for the popular press, are most likely written either
with a word processor, such as provided by Microsoft,
or in a TEX-family markup.

I believe that most extant SGML or XML doc-
uments are not actual source. For example, there
are “markdown” languages from which basic XML

documents can robustly be spawned. When SGML

or XML documents are actual source, the creators
are usually persons working, one way or another, in
document technology. Those creators usually work
with editing tools that have been adapted to mini-
mize the distinctions between SGML and XML that
I mentioned earlier in section 2.

I see the LATEX community as still under chal-
lenge by the concern raised by Chris Rowley at the
2010 TUG meeting over “peak TEX” (analogous to
“peak oil”), and here I’ve pointed to SGML (beyond
XML) being in decline. One of the threats for the
future of LATEX is its difficulty in being converted to
other formats for documents where that is sensible.
The concept of a LATEX profile provides a place where
LATEX and SGML can help each other to the benefit
of both.

5 Libraries for parsing and processing

Because the rules for an XML document are some-
what more restrictive than the rules for an SGML

document, libraries for processing XML are easier to
construct and maintain than libraries for processing
SGML. Indeed, the specification of SGML provides

2 There was a time after the rise of XML that version
4 of HTML, an SGML “application” (document type), was
the dominant markup for web pages. It worked because web
browsers were required to have native knowledge of HTML.
This continued for a while even after the early XML form of
HTML was promoted and then appeared to gain widespread
use through many web page instances that were not actually
well-formed XML.

for variations of syntax, detailed character set speci-
fication, and myriad markup shortcuts to the point
that I do not know whether any library was ever
produced to provide functions for handling a full
implementation of the SGML specification. However,
the extent of SGML use that I think desirable for
profiling LATEX is well within the territory covered
by SGML libraries.

5.1 Simplicity with XML

With the rise of XML and the ease of writing software
for parsing and transforming XML documents, many
new options appeared. With XML a document need
not be accompanied by a document type definition.
It is sufficient that transforming software knows the
markup vocabulary used with the document. Thus:

• An XML document may be rendered in a web
browser solely by linking the document to a CSS

stylesheet.

• An XML document may be transformed to an-
other format by using an XSLT transformation
that is defined by creating an XSLT stylesheet,
which itself is an XML document.

My guess is that XSLT is probably the most widely
used transformation language for XML today. Per-
sonally, I find it cumbersome to write for XSLT. I
would much rather code in a traditional programming
language. In particular, it is not pleasant trying to
code for XSLT when the translation target is LATEX.

5.2 The libraries OpenSP and SGMLSPM

I believe that the most widely deployed library for
handling SGML is OpenSP. It is a C++ library for
parsing and transforming SGML documents that was
spawned from James Clark’s SP. Before the rise of
XML, I believe Clark’s SP was dominant. For exam-
ple, at some point during the time of Sun Microsys-
tems’ Solaris operating system, the system manual
pages were re-coded from Roff source to a variant of
Docbook SGML, and SP was deployed for generating
various output formats. This arrangement for sys-
tem manual pages is found today in Ubuntu systems
though with OpenSP rather than SP. It’s not always
understood that since every XML document may be
construed as an SGML document, OpenSP can be
used with XML documents.

I might also mention OpenJade, which was
spawned from Jade, also by James Clark. OpenJade
provides an engine for Document Style Semantics and
Specification Language (DSSSL), which is an early
transformation language for SGML that is written
in SGML— thus, a forerunner of XSLT— under an
SGML declaration that makes one of its stylesheets
look like Lisp code. Usually package management

Why the LATEX community should care about SGML



218 TUGboat, Volume 41 (2020), No. 2

systems that house OpenSP also house OpenJade; I
mention this because online searches for “openjade”
can be easier than for “opensp”.

Finally, I want to mention the Perl software
SGMLSPM/sgmlspl for SGML transformations writ-
ten by David Megginson of Ottawa and released as
GPL software in 1995 that, to my knowledge — I use
it daily3 — has never since needed repair. SGML-

SPM/sgmlspl enables one to write a handler for each
element in an SGML (or XML) document type to
treat the rendering of that element in a translation.
It is designed to accept a parsed stream from OpenSP
and generate an output stream in the target format.
This works well for writing HTML, LATEX, and just
about any output format. If the handlers are not
written mindlessly, a single run of OpenSP piped to
SGMLSPM/sgmlspl can handle a very large docu-
ment. Also there is the advantage that inside one
of those handlers, the transformation writer has the
full power of Perl.

5.3 OpenSP needs maintenance

Unfortunately, as it is today, OpenSP only supports
the basic multilingual plane of Unicode (U+0000–
U+FFFF). Tackling the task of adding support for
all of Unicode might not at first glance seem hard, but
it is daunting because of the complexity of OpenSP
that arises from the extent of its coverage of SGML

beyond XML and its character handling. To my mind
this task might be a good master’s thesis project for
someone in Computer Science. Prior to modification
the code will require much study. The task needs
someone with stamina and good eyes.

References

[1] Bert Bos, Tantek Çelik, Ian Hickson, & H̊akon
Wium Lie, Cascading Style Sheets Level 2
Revision 1 (CSS 2.1) Specification, World
Wide Web Consortium Recommendation, 7
June 2011.
w3.org/TR/2011/REC-CSS2-20110607

[2] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen,
Eve Maler, & François Yergeau, Extensible
Markup Language (XML) 1.0 (Fifth
Edition), World Wide Web Consortium
Recommendation, 26 November 2008.
w3.org/TR/2008/REC-xml-20081126

3 After incorporating one additional feature written by
Dave Walden.

[3] S. Faulkner, A. Eicholz, et al., HTML 5.2,
World Wide Web Consortium Recommendation,
14 December 2017.
w3.org/TR/2017/REC-html52-20171214

[4] Charles F. Goldfarb, The SGML Handbook,
Clarendon Press, Oxford, 1990.

[5] William F. Hammond, “GELLMU: A Bridge
for Authors from LATEX to XML”, TUGboat
22:3 (2001), pp. 204–207.
tug.org/TUGboat/tb22-3/tb72hammond.pdf

[6] William F. Hammond, “Dual presentation
with math from one source using GELLMU”,
TUGboat 28:3 (2007), pp. 306–311.
tug.org/TUGboat/tb28-3/tb90hammond.pdf

A video of the presentation at TUG 2007,
July 2007, in San Diego is available at
http://zeeba.tv/conferences/tug-2007.

[7] William F. Hammond, “LATEX profiles as
objects in the category of markup languages”,
TUGboat 31:2 (2010), pp. 240–247.
tug.org/TUGboat/tb31-2/tb98hammond.pdf.
A video of the presentation at TUG 2010,
June 2010, in San Francisco is available at
http://zeeba.tv/conferences/tug-2010.

[8] William F. Hammond, “Can LATEX profiles
be rendered adequately with static CSS?”,
TUGboat 35:2 (2014), pp. 212–218.
tug.org/TUGboat/tb35-2/tb110hammond.pdf

A video recording of the presentation at
TUG 2014, June 2014, in Portland, Oregon is
available at http://zeeba.tv/conferences/

text/tex/tug-2014.

[9] Leslie Lamport, LATEX: A Document
Preparation System, 2nd edition,
Addison-Wesley, 1994.

[10] MacFarlane, John, Pandoc: A Universal
Document Converter.
pandoc.org

� William F. Hammond
University at Albany,
Albany, New York, and
San Diego, California
whammond (at) albany dot edu

https://www.albany.edu/

~hammond/

William F. Hammond

https://w3.org/TR/2011/REC-CSS2-20110607
https://w3.org/TR/2008/REC-xml-20081126
https://w3.org/TR/2017/REC-html52-20171214
https://tug.org/TUGboat/tb22-3/tb72hammond.pdf
https://tug.org/TUGboat/tb28-3/tb90hammond.pdf
http://zeeba.tv/conferences/tug-2007
https://tug.org/TUGboat/tb31-2/tb98hammond.pdf
http://zeeba.tv/conferences/tug-2010
https://tug.org/TUGboat/tb35-2/tb110hammond.pdf
http://zeeba.tv/conferences/text/tex/tug-2014
http://zeeba.tv/conferences/text/tex/tug-2014
https://pandoc.org

	Maximally useful source markup
	The concept of LaTeX Profiles
	A side remark on accessibility

	Why SGML rather than XML?
	Example: A simple table
	SGML, LaTeX, decline, and authors
	Why XML now dominates SGML
	Who the authors are

	Libraries for parsing and processing
	Simplicity with XML
	The libraries OpenSP and SGMLSPM
	OpenSP needs maintenance


