
TUGboat, Volume 41 (2020), No. 3 335

Keyword scanning

Hans Hagen

Some primitives in TEX can take one or more op-
tional keywords and/or keywords followed by one
or more values. In traditional TEX it concerns a
handful of primitives, in pdfTEX there are plenty
of backend-related primitives, LuaTEX introduced
optional keywords to some math constructs and at-
tributes to boxes, and LuaMetaTEX adds some more
too. The keyword scanner in TEX is rather special.
Keywords are used in cases like:

\hbox spread 10cm {...}

\advance\scratchcounter by 10

\vrule width 3cm height 1ex

Sometimes there are multiple keywords, as with
rules, in which case you can imagine a case like:

\vrule width 3cm depth 1ex width 10cm depth 0ex

height 1ex\relax

Here we add a \relax to end the scanning. If we
don’t do that and the rule specification is followed by
arbitrary (read: unpredictable) text, the next word
might be a valid keyword and when followed by a
dimension (unlikely) it will happily be read as a
directive, or when not followed by a dimension an
error message will show up. Sometimes the scanning
is more restricted, as with glue where the optional
plus and minus are to come in that order, but when
missing, again a word from the text can be picked up
if one doesn’t explicitly end with a \relax or some
other token.

\scratchskip = 10pt plus 10pt minus 10pt % okay

\scratchskip = 10pt plus 10pt % okay

\scratchskip = 10pt minus 10pt % okay

\scratchskip = 10pt plus whatever % error

% typesets "plus 10pt":

\scratchskip = 10pt minus 10pt plus 10pt

The scanner is case insensitive, so the following
specifications are all valid:

\hbox To 10cm {To}

\hbox TO 10cm {TO}

\hbox tO 10cm {tO}

\hbox to 10cm {to}

It happens that keywords are always simple
English words so the engine uses a cheap check deep
down, just offsetting to uppercase, but of course
that will not work for arbitrary UTF-8 (as used in
LuaTEX) and it’s also unrelated to the upper- and
lowercase codes as TEX knows them.

The above lines scan for the keyword to and
after that for a dimension. While keyword scanning is
case tolerant, dimension scanning is period tolerant:

\hbox to 10cm {10cm}

\hbox to 10.0cm {10.0cm}

\hbox to .0cm {.0cm}

\hbox to .cm {.cm}

\hbox to 10.cm {10.cm}

These are all valid and according to the speci-
fication; even the single period is okay, although it
looks funny. It would not be hard to intercept that
but I guess that when TEX was written anything
that could harm performance was taken into account.
One can even argue for cases like:

\hbox to \first.\second cm {.cm}

Here \first and/or \second can be empty.
Most users won’t notice these side effects of scanning
numbers anyway.

Pushing back tokens

The reason for writing up any discussion of keywords
is the following. Optional keyword scanning is kind
of costly, not so much now, but more so decades ago
(which led to some interesting optimizations, as we’ll
see). For instance, in the first line below, there is no
keyword. The scanner sees a 1 and it not being a
keyword, pushes that character back in the input.

\advance\scratchcounter 10

\advance\scratchcounter by 10

In the case of:

\scratchskip 10pt plux

it has to push back the four scanned tokens plux.
Now, in the engine there are lots of cases where
lookahead happens and when a condition is not satis-
fied, the just-read token is pushed back. Incidentally,
when picking up the next token triggered some ex-
pansion, it’s not the original next token that gets
pushed back, but the first token seen after the ex-
pansion. Pushing back tokens is not that inefficient,
although it involves allocating a token and pushing
and popping input stacks (we’re talking of a mix of
reading from file, token memory, Lua prints, etc.)
but it always takes a little time and memory. In Lua-
TEX there are more keywords for boxes, and there
we have loops too: in a box specification one or more
optional attributes are scanned before the optional
to or spread, so again there can be push back when
no more attr are seen.

\hbox attr 1 98 attr 2 99 to 1cm{...}

In LuaMetaTEX there is even more optional
keyword scanning, but we leave that for now and
just show one example:

\hbox spread 10em {\hss

\hbox orientation 0 yoffset 1mm to 2em {up}\hss

\hbox to 2em{here}\hss

\hbox orientation 0 xoffset-1mm to 2em{down}\hss

}

Keyword scanning

336 TUGboat, Volume 41 (2020), No. 3

Although one cannot mess too much with these
low-level scanners there was room for some opti-
mization, so the penalty we pay for more keyword
scanning in LuaMetaTEX is not that high. (I try
to compensate when adding features that have a
possible performance hit with some gain elsewhere.)

It will be no surprise that there can be interest-
ing side effects to keyword scanning. For instance,
using the two character keyword by in an \advance

can be more efficient because nothing needs to be
pushed back. The same is true for the sometimes
optional equal:

\scratchskip = 10pt

Similar impacts on efficiency can be found in the
way the end of a number is seen, basically anything
not resolving to a number (or digit). (For these,
assume a following token will terminate the number
if needed; we’re focusing on the spaces here.)

\scratchcounter 10% space not seen, ends \cs

\scratchcounter =10% no push back of optional =

\scratchcounter = 10% extra optional space gobble

\scratchcounter = 10 % efficient end of scanning

\scratchcounter = 10\relax % maybe less efficient

In the above examples scanning the number
involves: skipping over spaces, checking for an op-
tional equal, skipping over spaces, scanning for a
sign, checking for an optional octal or hexadecimal
trigger (single or double quote character), scanning
the number till a non-digit is seen. In the case of
dimensions there is fraction scanning as well as unit
scanning too.

In any case, the equal is optional and kind of
a keyword. Having an equal can be more efficient
then not having one, again due to push back in case
of no equal being seen, In the process spaces have
been skipped, so add to the overhead the scanning
for optional spaces. In LuaMetaTEX all that has
been optimized a bit. By the way, in dimension
scanning pt is actually a keyword and as there are
several dimensions possible quite some push back
can happen there, but we scan for the most likely
candidates first.

Catcode surprises

All that said, we’re now ready for a surprise. The
keyword scanner gets a string that it will test for,
say, to in case of a box specification. It then will
fetch tokens from whatever provides the input. A
token encodes a so-called command and a charac-
ter and can be related to a control sequence. For
instance, the character t becomes a letter command
with related value 116. So, we have three properties:
the command code, the character code and the con-
trol sequence code. Now, instead of checking if the

command code is a letter or other character (two
checks) a fast check happens for the control sequence
code being zero. If that is the case, the character
code is compared. In practice that works out well be-
cause the characters that make up a keyword are in
the range 65–90 and 97–122, and all other character
codes are either below that (the ones that relate to
primitives where the character code is actually a sub-
command of a limited range) or much larger numbers
that, for instance, indicate an entry in some array,
where the first useful index is above the mentioned
ranges.

The surprise is in the fact that there is no check-
ing for letters or other characters, so this is why the
following code will work too:1

\catcode‘O= 1 \hbox tO 10cm {...}% { begingroup

\catcode‘O= 2 \hbox tO 10cm {...}% } endgroup

\catcode‘O= 3 \hbox tO 10cm {...}% $ mathshift

\catcode‘O= 4 \hbox tO 10cm {...}% & alignment

\catcode‘O= 6 \hbox tO 10cm {...}% # parameter

\catcode‘O= 7 \hbox tO 10cm {...}% ^ superscript

\catcode‘O= 8 \hbox tO 10cm {...}% _ subscript

\catcode‘O=11 \hbox tO 10cm {...}% letter

\catcode‘O=12 \hbox tO 10cm {...}% other

In the first line, if we changed the catcode of T
(instead of O), it gives an error because TEX sees a
begin group character (category code 1) and starts
the group, but as a second character in a keyword (O)
it’s okay because TEX will not look at the category
code.

Of course only the cases 11 and 12 make sense in
practice. Messing with the category codes of regular
letters this way will definitely give problems with
processing normal text. In a case like:

{\catcode ‘o=3 \hbox to 10cm {oeps}} % \hb

{\catcode ‘O=3 \hbox to 10cm {Oeps}} % {$eps}

we have several issues: the primitive control sequence
\hbox has an o so TEX will stop after \hb which can
be undefined or a valid macro and what happens
next is hard to predict. Using uppercase will work
but then the content of the box is bad because there
the O enters math. Now consider:

{\catcode ‘O=3 \hbox tO 10cm {Oeps Oeps}}

% {$eps $eps}

This will work because there are now two O’s in
the box, so we have balanced inline math triggers.
But how does one explain that to a user? (Who
probably doesn’t understand where an error message
comes from in the first place.) Anyway, this kind of
tolerance is still not pretty, so in LuaMetaTEX we
now check for the command code and stick to letters

1 No longer in LuaMetaTEX where we do a bit more robust
check.

Hans Hagen

TUGboat, Volume 41 (2020), No. 3 337

and other characters. On today’s machines (and even
on my by now ancient workhorse) the performance
hit can be neglected.

In fact, by intercepting the weird cases we also
avoid an unnecessary case check when we fall through
the zero control sequence test. Of course that also
means that the above mentioned category code trick-
ery doesn’t work any more: only letters and other
characters are now valid in keyword scanning. Now,
it can be that some macro programmer actually used
those side effects but apart from some macro hacker
being hurt because no longer mastering those details
can be showed off, it is users that we care more for,
don’t we?

Current performance

To be sure, the abovementioned performance of key-
word and equal scanning is not that relevant in prac-
tice. But for the record, here are some timings on a
laptop with a i7-3849QM processor using MinGW bi-
naries on a 64-bit Windows 10 system. The times are
the averages of five times a million such assignments
and advancements.

one million times terminal LMTX LuaTEX

\advance\scratchctr 1 space 0.068 0.085
\advance\scratchctr 1 \relax 0.135 0.149
\advance\scratchctr by 1 space 0.087 0.099
\advance\scratchctr by 1 \relax 0.155 0.161
\scratchctr 1 space 0.057 0.096
\scratchctr 1 \relax 0.125 0.151
\scratchctr=1 space 0.063 0.080
\scratchctr=1 \relax 0.131 0.138

We differentiate here between using a space as
terminal or a \relax. The latter is a bit less efficient
because more code is involved in resolving the mean-
ing of the control sequence (which eventually boils
down to nothing) but nevertheless, these are not
timings that one can lose sleep over, especially when
the rest of a decent TEX run is taken into account.
And yes, LuaMetaTEX (LMTX) is a bit faster here
than LuaTEX, but I would be disappointed if that
weren’t the case.

� Hans Hagen
http://pragma-ade.com

Keyword scanning

	Pushing back tokens
	Catcode surprises
	Current performance

